
Moodle 2.9+ JavaScript with

AMD

sam marshall, 15 September 2015

What is AMD?

• Nothing to do with the CPU/GPU company…

• Module framework for including JavaScript

– All new JS code (2.9+) should use this framework

• Not available in Moodle 2.8 or below

– Other methods still work for now (YUI, Shifter)

• No need to port existing code yet

AMD modules

• Plugin can have one or more AMD modules

• Module is a .js file

• Can call functions in one module from another module

• Using multiple modules can improve readability

Creating an AMD module

1. Create JS file in correct location

2. Call it from PHP code

3. Build release version

1 <plugin>/amd/src/<module>.js
/**

* @module format_oustudyplan/sections

*/

define(['jquery'], function($) {

/**

* @alias module:format_oustudyplan/sections

*/

var t = {

init : function() {

// Your code here.

}

// Other functions and variables here, comma-separated.

};

return t;

});

Code structure

• You can actually organise code in a zillion ways

• Example with t variable is my favourite structure

– I use t as short for this (but without special behaviour)

• Official documentation uses multiple structures

– Hard to understand

Actual code

• Use jQuery (not YUI)

– Principles are similar to YUI

– Many jQuery tutorials and references on the web

• Use own judgement to select a non-sucky one

– Moodle currently has jQuery 1.11.2

• Function names and variables should now be

camelCase (different to PHP under_lines style)

Calling other modules

• Example code only required jQuery.

• Add modules at start if desired
define(['jquery', 'local_thing/module'], function($, localThing) {

• Variable will be set to ‘t’ from module

• Or require dynamically anywhere in code
require(['local_thing/module'], function(localThing) {

localThing.someFunction();
});

2 Calling from PHP

• If no parameters to function:
$PAGE->requires->js_call_amd('local_thing', 'init');

• If parameters:
$PAGE->requires->js_call_amd('local_thing', 'init', array('frog', 42));

• Can call any function this way

– init is not a special name

3 Build release version

• The previous steps work already for a developer system

– Assuming you have cachejs setting off

• Need to use grunt to minify for release version

Install grunt

• From Moodle root, 2 commands:
npm install
npm install -g grunt-cli

• If it doesn’t work, similar troubleshooting as for phpunit

• It worked for me!

Run grunt

• Run grunt after changing AMD JS files

• In command prompt (git bash), change to plugin

directory then run it:
cd local/thing
grunt jshint uglify

• jshint checks your JS code for possible errors

– If there are errors, it will stop after that

• uglify does the actual minification

Successful run

• The 6 files created are in amd/build

• Always says created even if they already exist

Run before commit

• Run grunt to update minified files before each commit

– If a commit affects amd/src then it should also update

amd/build

• No need to run it while developing

– Changes to amd/src take effect on reload when

cachejs setting is turned off

• When cachejs is on, amd/build is used

– Need to purge caches/update JS revision to update

Summary

• AMD modules are .js files in amd/src within plugin

• Include from PHP with $PAGE->js_call_amd

• Run grunt to update amd/build minified versions

• Examples in format/oustudyplan, but currently only using

AMD properly in osep branch

• https://docs.moodle.org/dev/Javascript_Modules

https://docs.moodle.org/dev/Javascript_Modules

IT Delivery

The Open University

Walton Hall

Milton Keynes

MK7 6AA

www.open.ac.uk

