

Essential mathematics 2 (MST125) content listing

Unit 1 Key techniques	Functions, trigonometry, vectors, matrices, differentiation, integration and using a computer algebra system (Maxima)
Unit 2	How to typeset mathematics from a choice of typesetting packages: LaTeX, Microsoft
Mathematical typesetting	Word or Libre Office
Unit 3 Number theory	Euclid's algorithm and congruences, division theorem, Bezout's identity, residue classes
	Modular arithmetic, Fermat's Little Theorem, divisibility tests and check digits
	Multiplicative inverses, linear congruences and affine ciphers
Unit 4 <i>Conics</i>	Conic sections, definitions, properties and applications of parabolas, ellipses and
	hyperbolas, conics not in standard position
	Parametric equations
Unit 5 Statics	Forces including weights, tensions, normal reactions and friction
	Systems in equilibrium. Particle on an inclined plane
	Pulley systems
Unit 6	I ransformations of the plane, composite and inverse transformations
Geometric transformations	Isometries, linear transformations and affine transformations
Unit 7 Topics in calculus	Revision of integration by substitution and by parts, partial fractions of proper and
	Improper rational expressions
	Graphs of rational functions
	Integration methods using ingonometric expressions and substitutions and applications
	integration of hyperbolic functions and hyperbolic substitutions
Linit 8	Solution of differential equations by direct integration and separation of variables
Differential equations	Applications including population modelling, radioactive decay and Newton's law of
Differential equations	cooling
	l inear differential equations and the integrating factor method
	Direction fields, numerical solutions of differential equations and solving differential
	equations using a computer
Unit 9	Mathematical statements, counter-examples, proof by exhaustion
Mathematical language and	Negating and combining statements, implications and equivalence
proof	Direct proofs, deduction, proving an implication, proving an equivalence, proving a
[statement that is neither an implication nor an equivalence
	Mathematical induction
	Indirect proofs – proof by contradiction and contraposition
	Proving Fermat's little theorem
Unit 10 <i>Dynamics</i>	Position, velocity and acceleration in 1, 2 and 3 dimensions
	Newton's second law of motion, projectiles.
Unit 11 <i>Eigenvalu</i> es	Finding the eigenvalues and eigenvectors of a 2x2 matrix (and higher order matrices
	using software)
	Eigenvalues and eigenvectors of triangular matrices, flattenings, rotations, reflections
	and generalised scalings
	Diagonalisation and powers of matrices, predator-prey system
	Systems of differential equations, coupled and decoupled systems
Unit 12 Combinatorics	Principles of counting, the addition, subtraction and multiplication principles
	Sequences, permutations and combinations, connections with probability
	First order recurrence systems, antimetic and geometric sequences
	Solving inst-order recurrence systems, infaing recurrences for counting problems
	The Fibonacci sequence and its closed form
	Finding second-order recurrence systems for counting problems
	i mang second-order recurrence systems for counting problems