

Mathematical methods, models and modelling (MST210) content listing

Unit 1 First- and second-order differential equations	Analytic solution of first-order differential equations using either separation of variables or the integrating factor method. Direction fields and numerical solution by Euler's method. Solution of linear constant- coefficient second-order differential equations. Using the method of undetermined coefficients to find particular integrals for simple
	inhomogeneous differential equations.
Unit 2 Vector algebra and statics	Vectors both geometrically and algebraically. Scalar and vector products. Modelling forces (weight, normal reaction, tension, friction) as vectors. Calculating torgues. Application to static equilibrium problems.
Unit 3 <i>Dynamics</i>	Newton's laws of motion. Sliding friction. Models of air resistance. Application to single particle dynamics problems. Projectile motion.
Unit 4 <i>Matrices and determinants</i>	Solving systems of linear equations using Gaussian elimination. Matrices as linear transformations. Matrix algebra and matrix inversion. Evaluating determinants.
Unit 5 Eigenvalues and eigenvectors	Finding eigenvalues and eigenvectors by hand for simple cases. Iterative methods for finding eigenvalues of large matrices.
Unit 6 Systems of linear differential equations	Solving first-order and second-order systems of linear differential equations by using the eigenvalue and eigenvectors of the coefficient matrix.
Unit 7 Functions of several variables	Visualising functions of several variables, contour maps and gradient along a path. Partial derivatives. The gradient vector. Taylor polynomials. Classifying stationary points.
Unit 8 Mathematical modelling	Case study of pollution modelling in the Great Lakes. Overview of the modelling process. Dimensional consistency.
Unit 9 Oscillations and energy	Modelling forces due to a spring (Hooke's law). Motion of a single particle under influence springs. Potential energy. Principle of conservation of mechanical energy and equivalence with Newton's laws. Application of energy conservation to mechanical systems.
Unit 10 Forcing, damping and resonance	Modelling dampers. Single particle systems with springs and dampers. Forced oscillations and resonance.
Unit 11 Normal modes	Analysing mechanical systems with two or more particles with springs.
Unit 12 Systems of differential equations	Modelling interacting populations using non-linear differential equations. Qualitative solutions via phase plane portraits. Equilibrium points. Using linearization to classify equilibrium points.
Unit 13 Fourier series	Periodic functions. Representing periodic functions as Fourier series of sines and cosines. Pointwise convergence theorem.
Unit 14 Partial differential equations	Separation of variables applied to partial differential equations. Application to the wave equation and also to the heat equation.
Unit 15 Vector calculus	Scalar and vector fields. Gradient of a scalar field. Cylindrical and spherical coordinates.
Unit 16 Further vector calculus	Divergence and curl of a vector field. Line integrals of scalar and vector fields. Conservative fields and the curl test.
Unit 17 <i>Multiple integrals</i>	Area and volume integrals in Cartesian coordinates. Area integrals in polar coordinates. Volume integrals in cylindrical and spherical coordinates.
Unit 18 Reviewing the model	Dimensional analysis. Evaluating mathematical models. Case study on Great Lakes revisited.
Unit 19 Systems of particles	Centres of mass of systems consisting of particles, simple geometric objects and laminas. Analysing collision problems using conservation of momentum and Newton's law of restitution.
Unit 20 Circular motion	Uniform and non-uniform motion in a circle. Defining angular velocity and angular momentum.
Unit 21	Analysing the motion of mechanical systems that rotate about an axis
Rotating bodies and angular momentum	that may accelerate (but has a fixed direction).