

Mathematical methods and fluid mechanics (MST326) content listing

Unit 1 Properties of fluid	Definition of viscosity, density, and pressure.
	Perfect gas law, basic equation of fluid statics, surface forces, and
	Archimedes' Principle.
	Boyle's law and basic modelling of the atmosphere.
Unit 2 Ordinary differential equations	Cauchy-Euler equations, reduction of order and variation of
	parameters methods, boundary-value problems, method of power
	series.
Unit 3	Integration of partial derivatives, chain rule for partial derivatives,
First-order partial differential equations	method of characteristics.
Unit 4 Vector field theory	Cylindrical and spherical polar coordinates.
	Gradient of scalar fields, divergence and curl of vector fields.
	Surface and volume integrals.
	Gauss' theorem and the continuity equation.
	Stokes' theorem and irrotational vector fields.
Unit 5 Kinematics of fluids	Definition of pathlines and streamlines. The stream function and its
	applications.
	Modelling fluid motion and the total derivative.
	The continuity equation and incompressible flows. Derivation of
	Euler's equation.
Unit 6 Bernoulli's equation	Inviscid flows, Bernoulli's equation and its applications; flow through
	and orifice, and a contraction in a pipe.
	Open channel flows: classification of flows and flow over a weir.
Unit 7 Vorticity	Definition of vorticity, circulation and line vortex.
	Inviscid flow around an obstacle.
	Kelvin's theorem and its applications.
	Introduction to viscous flows, the Reynolds number, and turbulence.
Unit 8 The flow of a viscous fluid	Newtonian fluids, flow between parallel plates.
	The Navier-Stokes equations and boundary conditions.
	Approximations of the Navier-Stokes equations and some
	applications: pipe flow and the slider bearing.
Unit 9	Classification of partial differential equations and method of
Second-order partial differential equations	characteristics.
	The wave equation and its d'Alembert's solution.
Unit 10 Fourier series	Separation of variables.
	Fourier sine/cosine series, and generalised Fourier series.
	Sturm-Liouville problems. Legendre series.
Unit 11 Laplace's equation	Applications of Laplace's equations, boundary conditions.
	Rectangular domains and the Principle of superposition.
	Circular regions. Poisson's integral formula and mean-value
	theorem, application to flow past a cylinder.
	Laplace equation in spherical polar coordinates.
Unit 12 Water waves	Simple model for water waves, progressive wave solution,
	Deep water gravity wayes, wayes in finite depth.
	Dispersive waves.
Unit 13 Boundary layers and turbulence	Definition of boundary layer and laminar/turbulence transition.
	Laminar boundary layers, momentum integral equation.
	Turbulent flow, Reynolds averaged Navier-Stokes equations
	turbulent boundary layers, friction law for smooth pipes. Colebrook-
	White equation, and the Moody diagram.