Solutions and comments on Activities

Activity I

Was your answer elephant?

Activity 2

Was your answer elephant again? Or perhaps elk, or eel? See the discussion in the text after the activity.

Activity 3

Substituting $n=48$ into the formula

$$
P=1.24 n-0.69 n
$$

gives

$$
\begin{aligned}
P & =1.24 \times 48-0.69 \times 48 \\
& =59.52-33.12 \\
& =26.4 .
\end{aligned}
$$

So the profit is $£ 26.40$.

Activity 4

Substituting $n=48$ into the formula
$P=0.55 n$
gives
$P=0.55 \times 48=26.4$.
So the profit is $£ 26.40$.

Activity 5

(a) $\frac{2}{5} T=24$
(b) Two-fifths of T is 24,
so one-fifth of T is $24 \div 2=12$,
so T is $5 \times 12=60$.
So there are 60 toddlers in the village.
(You can confirm that this is the right answer by checking that the equation in part (a) is correct when $T=60$ is substituted in.)

Activity 6

Substitute $a=-2$ and $b=5$ in each case.

$$
\text { (a) } \begin{aligned}
\frac{5}{2}+a & =\frac{5}{2}+(-2) \\
& =\frac{5}{2}-2 \\
& =\frac{5}{2}-\frac{4}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(b) $-a+a b=-(-2)+(-2) \times 5$

$$
\begin{aligned}
& =2+(-10) \\
& =2-10 \\
& =-8
\end{aligned}
$$

(c) $a b^{2}=(-2) \times 5^{2}$

$$
\begin{aligned}
& =-2 \times 25 \\
& =-50
\end{aligned}
$$

(d) $b+3(b-a)=5+3(5-(-2))$

$$
\begin{aligned}
& =5+3 \times 7 \\
& =5+21 \\
& =26
\end{aligned}
$$

Activity 7

(a) This is correct. Adding three copies of a number together is the same as multiplying it by 3 .
(b) This is correct, by an index law. (The index laws were covered in Unit 3.)
(c) This is correct. Multiplying a number by 2 and then dividing by 2 results in the number you started with.
(d) This is incorrect. By an index law,
$p^{2} \times p^{3}=p^{5}$.
(The statement is correct for $p=0$ and $p=1$, but these are the only values for which it is correct, so the expressions aren't equivalent.)
(e) This is correct. $2 z$ is the same as $z+z$, so $z+2 z$ is the same as $z+z+z$, which is the same as $3 z$.
(f) This is correct. Since $6=3 \times 2$, multiplying a number by 6 and then dividing by 2 results in 3 times the number you started with.
(g) This is correct. Adding the negative of a number is the same as subtracting the number. (For example, $6+(-3)$ is the same is $6-3$. You met this property of numbers in Unit 1.)
(h) This is incorrect. Multiplying the number 3 by n and then dividing by n gives the result 3 .
(The statement is correct for $n=3$, but this is the only value for which it's correct, so the expressions aren't equivalent.)

Activity 8

(a) The expression is

$$
+x^{3}-x^{2}+x+1 .
$$

Its terms are $+x^{3},-x^{2},+x$ and +1 .
(b) The expression is

$$
+2 m n=-3 r .
$$

Its terms are $+2 m n$ and $-3 r$.
(c) The expression is

$$
-20 p^{2} q^{2} \underbrace{+\frac{1}{4} p}-18-\frac{1}{3} q .
$$

Its terms are $-20 p^{2} q^{2},+\frac{1}{4} p,-18$ and $-\frac{1}{3} q$.

Activity 9

(a) The expression is

$$
-X+20 Y-5 Z
$$

Reversing the order of the terms gives $-5 Z+20 Y-X$.
(b) The expression is

$$
+2 u-3 u v .
$$

Reversing the order of the terms gives

$$
-3 u v+2 u
$$

(c) The expression is

$$
+4 i \xrightarrow{+j}+5 .
$$

Reversing the order of the terms gives $5-j+4 i$.
(d) The expression is
$+a-b+c+d$.
Reversing the order of the terms gives

$$
d+c-b+a
$$

Activity 10

(a) The third term is $4 y^{2}$, with coefficient 4 .
(b) The second term is $-9 \sqrt{q}$, with coefficient -9 .
(c) The third term is x^{2}, with coefficient 1.
(d) The first term is $-a^{2} b$, with coefficient -1 .
(e) The term in m^{2} is $-3 m^{2}$, with coefficient -3 .
(f) The term in b is $2 b$, with coefficient 2 .

Activity II

(a) There is no constant term.
(b) There is a constant term, -7 .
(c) There is a constant term, 5 .
(d) There is no constant term.
(e) There is a constant term, 1.
(f) There is no constant term.

Activity 12

(a) $8 A+7 A=15 A$
(b) $-5 d+8 d-2 d=1 d=d$
($1 d$ is usually written as d.)
(c) $-7 z+z=-7 z+1 z=-6 z$
(d) $1.4 p q+0.7 p q-p q=1.4 p q+0.7 p q-1 p q$

$$
=1.1 p q
$$

(e) $\frac{1}{2} n^{2}-\frac{1}{3} n^{2}=\frac{3}{6} n^{2}-\frac{2}{6} n^{2}=\frac{1}{6} n^{2}$
(You should give the exact answer, $\frac{1}{6} n^{2}$, not an approximation such as $0.167 n^{2}$.)

Activity 13

(a) These are like terms: both are terms in $a b$.
(b) These are like terms: both are terms in rst.
(c) These are unlike terms: the first is a term in b, and the second is a term in b^{2}.
(d) These are like terms: both are terms in D.
(e) These are like terms: both are terms in $x y$.
(The second term can be written as $-3 x y$.)
(f) These are like terms: both are terms in $a c^{2}$. (The first term can be written as $4 a c^{2}$.)
(g) These are like terms: both are terms in z. (The first term has coefficient 1, and the second has coefficient -1.)
(h) These are like terms: both are terms in $a b c$.
(The second term can be written as $a b c$, and both terms have coefficient 1.)
(i) These are unlike terms. If we write the second term with the letters in alphabetical order, then it's $9 c d^{2}$. So the first term is a term in $c^{2} d$ (that is, $c \times c \times d$), and the second is a term in $c d^{2}$ (that is, $c \times d \times d)$.
(j) These are unlike terms: the first is a term in A^{2}, and the second is a term in a^{2}.
(k) These are unlike terms: the first is a term in $f h$, and the second is a term in $g h$.
(l) These are like terms, as they're both constant terms.
(m) These are unlike terms: the first is a constant term, and the second is a term in m.

Activity 14

(a) $4 A-3 B+3 C+5 A+2 B-A$

$$
=4 A+5 A-A-3 B+2 B+3 C
$$

$$
=8 A-B+3 C
$$

(b) $-8 v+7-5 w-2 v-8$ $=-8 v-2 v-5 w+7-8$ $=-10 v-5 w-1$
(c) $20 y^{2}+10 x y-10 y^{2}-5 y-5 x y$ $=20 y^{2}-10 y^{2}+10 x y-5 x y-5 y$ $=10 y^{2}+5 x y-5 y$
(d) $-4 e f+8 e^{2} f+10 f e-3 f^{2} e$ $=-4 e f+8 e^{2} f+10 e f-3 e f^{2}$
$=-4 e f+10 e f+8 e^{2} f-3 e f^{2}$ $=6 e f+8 e^{2} f-3 e f^{2}$
(e) $\frac{1}{2} a+\frac{1}{3} b+2 a+\frac{1}{4} b$
$=\frac{1}{2} a+2 a+\frac{1}{3} b+\frac{1}{4} b$
$=\frac{1}{2} a+\frac{4}{2} a+\frac{4}{12} b+\frac{3}{12} b$
$=\frac{5}{2} a+\frac{7}{12} b$

Activity 15

(a) $2 a^{3}-3 a-2 a^{3}-3 a=-6 a$
(b) $2 m+n-5 m+2 n+3 m=3 n$
(c) $b+2 b+3 b-6 b=0$

Activity 16

(a) The formula is
$A=10 c+2 a$.
(b) The formula is
$T=7 c+14 a$.
(c) The formula is
$C=10 c+2 a+7 c+14 a$.
(d) Collecting like terms gives

$$
C=17 c+16 a
$$

(e) Substituting $c=22$ and $a=10$ in the formula found in part (d) gives

$$
C=17 \times 22+16 \times 10=374+160=534
$$

The cost of the trip is $£ 534$.

