

Graphs, games and designs (MST368) - Content listing

Book A - Graphs	
Unit Al	A graph is a collection of points, or vertices, joined by lines, or
Introduction to	edges, and this unit gives a general introduction to these. We
Graphs	discuss Eulerian and Hamiltonian graphs and related problems;
	one of these is the well-known Königsberg bridges problem.
Unit A2	Trees are graphs occurring in areas such as branching
Trees	processes, decision procedures and the representation of
	molecules. We discuss their mathematical properties and their
	applications, such as to the minimum connector problem and
	the travelling salesman problem.
Unit A3	When can a graph be drawn in the plane without crossings? Is it
Planarity and	possible to colour the countries of any map with just four colours
colouring	so that neighbouring countries have different colours? These are
	two of several apparently unrelated problems considered in this
_	Unit.
BOOK B - NETWORKS	
	This unit is concerned with connectivity in graphs and digraphs.
Network flows	For example, what is the maximum amount of a commodity
	(gas, water, passengers) that can pass between two points of a
Unit D2	Optimal patha packing and scheduling Llow do you plan a
Notworks 2	complex engineering project encompassing many activities?
Networks 2	This application of graph theory is called 'critical path planning'
Unit B3	Matchings and assignment if there are ten applicants for ten
Networks 3	iobs and each is suitable for only a few jobs, is it possible to fill all
Networks 5	the jobs? This unit considers problems where we need to 'ngir off'
	people or objects from two distinct groups, subject to certain
	constraints.
Book C - Games	
Unit C1	You'll learn the basics of game theory, and take a closer look at
Introduction to	strategies to win some recreational games, such as Nim.
games	
Unit C2	Here you will study games where what one player wins is equal to
Zero-sum games	what the other loses. The main result is von Neumann's theorem,
	which tells us that there is always a solution to such games.
Unit C3	We consider how to solve games in general, using an idea called
General games and	Nash equilibrium, and we look at applications to topics such as
Nash equilibria	evolutionary biology and economics.

Graphs, games and designs (MST368) - Content listing

Book D - Designs	
Unit D1	Sudoku is a puzzle which is internationally popular. A completed
Latin squares	Sudoku is an example of a Latin square, and this unit discovers
	the mathematics behind these arrays of symbols.
Unit D2	When we send a message through a system where errors or
Error-correcting	interference can occur, how do we ensure that the recipient
codes	receives the same message as we sent? Solving this problem is
	the topic of coding theory.
Unit D3	If an agricultural research station wants to test different varieties
Block designs	of a crop, how should we arrange the crops to minimise bias due
	to variations in, for example, the soil and sunlight? The answer
	lies in the study of block designs