Unit 1: Getting started	Introduction to Python in the context of solving
	equations of one variable using various iterative
	methods such as simple iteration, bisection methods,
	Newton-Raphson method, and the convergence of
	simple iterative schemes.
Unit 2: Interpolation	Practical root-finding, Lagrange interpolation; least-
	squares curve fitting, splines.
Unit 3: Systems of linear equations	Solution of linear equations by LU decomposition, ill-
	conditioning, applications in finding eigenvalues, least-
	squares regression analysis.
Unit 4: Data analysis	Analysing big data, single value decomposition (SVD),
	principal component analysis (PCA), independent
	component analysis (ICA), multidimensional scaling, k-
	means.
Unit 5: Linear programming	Simplex method, graphical formulations, two-phase
	simplex method, duality and sensitivity analysis.
Unit 6: Systems of nonlinear equations	Newton-Raphson method for multivariate problems,
	quasi-Newton methods, Broyden's method,
	convergence of simple iterative schemes.
Unit 7: Nonlinear optimization	Minimising functions of one variable, moving on to
	multivariate problems that include unconstrained
	minimization and constrained minimization with
	equality and inequality constraints.
Unit 8: Differentiation, integration and	Numerical differentiation, numerical integration,
ordinary differential equations	Newton-Cotes formulae, trapezium method, Simpson
	method, Euler method, Runge-Kutta method, boundary
	value, eigenvalue problems, shooting methods.
Unit 9: Random processes	Basic theory of random variables, random walks,
	Markov chains, Monte Carlo integration, numerical
	solution to stochastic differential equations.
Unit 10: Case studies	A series of case studies which consolidate ideas
	presented in the previous units.

Computational applied mathematics (MST374) content listing