

Applied Statistical Modelling (M348) content listing

Unit 1: An introduction to statistical	Revises simple linear regression and is also an introduction to the statistical
modelling and R	software used in M348, namely R.
Unit 2: <i>Multiple linear regression</i>	Description of the multiple linear regression model, diagnostics including
	leverage and Cook's distance, transformations, measuring model fit, stepwise
	regression.
Unit 3: Regression with a categorical	Regression with a factor, indicator variables, analysis of variance and the
explanatory variable	ANOVA table, contrasts.
Unit 4: Multiple regression with both	One covariate and one factor: parallel slopes and non-parallel slopes.
covariates and factors	regression with two factors, interactions, regression with any number of
	factors and covariates.
Unit 5: Case study	An example of statistical modelling in practice. Preparing data for analysis,
	missing data, conveying results, replication.
Unit 6: Regression for a binary	The logistic function, logistic regression, assessing model fit for logistic
response variable	regression models, diagnostic plots for logistic regression models
Unit 7: Generalised linear models	Poisson regression, the generalized linear model, inference for GLMs, GLM
	applications.
Unit 8: Log-linear models for	Two-way contingency tables, contingency tables with more than two variables,
contingency tables	links between logistic and loglinear models.
Strand study	Implications of when the classical linear regression model assumption do
Introduction to Econometrics (Strand A	not hold, simultaneous equation models, panel data models.
Econometrics)	Or
Or	Dissimilarity, assessing clusters, hierarchical clustering, partitional
Cluster Analysis (Strand B Data	clustering, density-based clustering.
Science)	
Strand study	Stock and flow variables, persistence and momentum, random walks,
Introduction to Time Series	testing for stationarity, spurious regression and cointegration.
Econometrics (Strand A Econometrics)	Or
Or	Characterising big data, handling big data, algorithms and models, data
Big Data (Strand B Data Science)	analysis implications, consent, anonymisation and good practice.
Final unit: Review unit: Data analysis in	The general linear model, embedding the general linear model in
practice	generalised linear modelling, choosing the right GLM, outliers.