

Complex analysis (M337) content listing

Unit A1	Complex numbers properties and arithmetic
Complex numbers	The complex plane, modulus and argument, and polar form
	Finding roots of complex numbers and solving quadratic equations
	Sketching sets in the complex plane
	The Triangle Inequality
Unit A2	Complex functions properties
Complex functions	Standard complex functions, and methods for combining functions
	Paths in the complex plane
	Standard paths
	Exponential, trigonometric, hyperbolic and logarithmic functions
Unit A3	Sequences of complex numbers, and rules for testing for convergence or divergence
Continuity	Continuous functions – sequential definition and ε-δ definition
	Limits of functions
	Open sets, closed sets, path connected sets, regions, bounded sets, compact sets
	and their properties
Unit A4	Derivatives and their properties
Differentiation	The Cauchy–Riemann equations
	Smooth paths and angles between smooth paths
	Conformal functions
Unit B1	Revision of real integration
Integration	Integrating complex functions along smooth paths and contours
	The Fundamental Theorem of Calculus and Integration by Parts
	Estimating contour integrals
Unit B2	Simple contours and simple-closed contours
Cauchy's Theorem	The Jordan Curve Theorem
	Cauchy's Theorem and Cauchy's Integral Formulas
	Liouville's Theorem and the Fundamental Theorem of Algebra
	Methods for evaluating contour integrals
	The Primitive Theorem and Morera's Theorem
Unit B3	Series of complex numbers, and rules for testing for convergence or divergence
Taylor series	Power series
	The radius of convergence
	The Differentiation and Integration Rules for Power Series
	Taylor series and Taylor's Theorem
	Taylor series of standard functions
	Rules for calculating and manipulating Taylor series
	The Uniqueness Theorem.
Unit B4	solated singularities, removable singularities, poles and essential singularities
Laurent series	Laurent series and Laurent's Theorem
	Calculating Laurent series
	Classifying the behaviour of functions near singularities
	The Casorati–Weierstrass Theorem
	The residue of a function at a singularity
	Evaluating integrals using Laurent series
Unit C1	Methods for calculating residues
Residues	Cauchy's Residue Theorem
	Calculating real trigonometric and improper integrals using the Residue Theorem
	Summing series using the Residue Theorem
	Analytic continuation
	More applications for calculating improper integrals
Unit C2	Winding numbers
Zeros and extrema	The Argument Principle and Rouché's Theorem
zeros and extrema	
zeros and extrema	The Open Mapping Theorem, the Local Mapping Theorem, the Inverse Function Rule
zeros ano extrema	The Open Mapping Theorem, the Local Mapping Theorem, the Inverse Function Rule Finding maxima and minima using the Maximum and Minimum Principles
zeros and extrema	The Open Mapping Theorem, the Local Mapping Theorem, the Inverse Function Rule Finding maxima and minima using the Maximum and Minimum Principles Schwarz's Lemma
zeros and extrema	The Open Mapping Theorem, the Local Mapping Theorem, the Inverse Function Rule Finding maxima and minima using the Maximum and Minimum Principles Schwarz's Lemma Uniform convergence of sequences and series
zeros and extrema	The Open Mapping Theorem, the Local Mapping Theorem, the Inverse Function Rule Finding maxima and minima using the Maximum and Minimum Principles Schwarz's Lemma

Unit C3	Properties of linear functions and the reciprocal function
Conformal mappings	The extended complex plane, the point at infinity, generalised circles, the Riemann
	sphere and stereographic projection
	Möbius transformations – definitions and properties. Images of generalised circles,
	generalised open discs and lunes under Möbius transformations
	Images of regions under conformal mappings. Composing conformal mappings
Unit D1	A model for fluid flow governed by a velocity functions
Fluid flows	Streamlines and stagnation points for the flow
	Circulation and flux. Ideal flows
	A source, sink and vortex of a flow
	Complex potential functions and stream functions
	Examples of fluid flows
	The Joukowski function and its properties
	The Obstacle Problem, and how to solve this problem for certain obstacles using the
	Flow Mapping Theorem
	Flow past and an aerofoil
Unit D2	Iterating functions and iteration sequences
The Mandelbrot set	Classifying types of fixed points of functions
	Conjugate functions and conjugate iteration sequences
	Complex quadratic functions
	The escape set and keep set
	Periodic points, cycles and multipliers
	Graphical iteration of real functions
	Connected and disconnected sets
	The Mandelbrot set and its properties
	The Fatou–Julia Theorem
	Methods for determining whether a point lies in the Mandelbrot set
	Saddle-node and period-multiplying bifurcations.