

Deterministic and stochastic dynamics (MS327) content listing

Unit 1 Introduction and differential equations	Logistic equation, phase space, stability of fixed points,
	constants of motion, solving differential equations, separation of
	variables, complementary functions and particular integrals,
	integrating factor method
Unit 2 Oscillations of linear systems	Harmonic oscillator, coupled oscillators, normal modes,
	Lissajous curves, Fourier series, damped oscillators
Unit 3 Nonlinear dynamics	Phase flow, Lotka-Volterra equations, classification of
	equilibrium points, periodic solutions and limit cycles, Poincaré-
	Bendixson theorem, chaotic orbits, Lyapunov exponents
Unit 4 Random motion and probability	Random walk, probability density, uniform, normal and
	exponential distribution, mean value, variance, moments
Unit 5 Introduction to the calculus of variations	Functionals, stationary paths, Euler-Lagrange equations, first
	integral, Fermat's principle
Unit 6 Lagrangian mechanics	Kinetic and potential energy, Hamilton's principle, generalised
	coordinates, Lagrangian, action
Unit 7 Exploring dynamics using maps	Poincaré sections and return map, classification of fixed points,
	periodic orbits, logistic map, Hénon map
Unit 8 Quantifying chaotic dynamics	Lyapunov exponents, chaotic orbits, tent map, box-counting
	dimension, skinny baker's map, Kaplan-Yorke dimension
Unit 9 Random walks and diffusion	Concentration, flux, continuity equation, diffusion equation, Fick's
	law, advection-diffusion equation, Gauss's theorem, heat
	equation
Unit 10 Fourier transforms	Fourier transform, inverse Fourier transform, Fourier transform
	pairs, Fourier transform rules, convolution theorem
Unit 11 Solving the diffusion equation	Non-transform derivative rule, propagator, solving partial
	differential equations, Dirichlet and Neumann boundary
	conditions, eigenvalues and eigenfunctions, generalised Fourier
	series, Bessel functions
Unit 12 Case studies in stochastic processes	Absorbing and reflecting boundary conditions, survival
	probability, first passage probability, generalised random walks,
	Fokker-Planck equation, stationary probability density, Ornstein-
	Uhlenbeck process, applications in finance, Black-Scholes
	formulas