[^0]Information
The following questions will allow you to test how prepared you are for embarking on studying SM381. They assess the knowledge that we expect you to know already and be comfortable using. Many of these questions have multiple algebraic or numerical variants, so you may get a different set of questions each time you attempt the quiz, which you may do as often as you wish. When entering algebraic answers, you may use the symbols "+" (plus), "-" (minus), "*" (multiply), "/" (divide) and "N" (raise to the power of) as well as brackets "(" and ")". Use "i" for $\sqrt{-1}$, use "e" for the exponential function, and use "sqrt" to indicate the square root function. For Greek letters, simply type the name, such as "pi" for π or "theta" for θ
When entering numerical answers you should also include units, if necessary, for example $" 3.2^{*} \mathrm{~m} / \mathrm{s}^{\prime}$ or $" 6.8^{*} \mathrm{~kg} \mathrm{~m}^{\wedge} 2 / \mathrm{s}^{\wedge} 2^{"}$

Question 1 Not answered
Marked out of 1.00 \qquad

A component of a vector in Cartesian coordinates

$\mathbf{r}=4 \mathbf{e}_{y}+2 \mathbf{e}_{z}$ is a vector
Give the value of the \mathbf{e}_{z}-component of \mathbf{r}
\mathbf{e}_{z}-component $=$

The \mathbf{e}_{z}-component is the coefficient of \mathbf{e}_{z} in the vector, \mathbf{r}. For $\mathbf{r}=4 \mathbf{e}_{y}+2 \mathbf{e}_{z}$ is it 2
See An introduction to vector algebra Section 3

Question 2 Not answered

Marked out of 1.00 \qquad

The magnitude of a vector in Cartesian coordinates

$\mathbf{r}=2 \mathbf{e}_{x}+\mathbf{e}_{z}$ is a vector.
Calculate the magnitude of vector r
Magnitude $=$
(Enter sart(c) for the square root of c)

The magnitude of a vector written in the form
$\mathbf{r}=a_{x} \mathbf{e}_{x}+a_{y} \mathbf{e}_{y}+a_{z} \mathbf{e}_{z}$
is given by $a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
In this case, $a_{x}=2, a_{y}=0$ and $a_{z}=1$ giving
$a=\sqrt{4+0+1}=\sqrt{5}$.

See An Introduction to Vector Algebra Section 3

Question 3 Not answered

Marked out of 1.0

Unit vectors in Cartesian coordinates
$\mathbf{r}=4 \mathbf{e}_{y}+2 \mathbf{e}_{z}$ is a vector
Calculate the unit vector $\hat{\mathbf{r}}$.
(Type ei to input \mathbf{e}_{x}, ey to input \mathbf{e}_{y}, ez to input \mathbf{e}_{z} and sqrt(c) to input \sqrt{c}.)
$\hat{\mathbf{r}}=$
$\hat{\mathbf{r}}$ is the unit vector of \mathbf{r} and is given by $\frac{1}{|\mathbf{r}|} \mathbf{r}$. It has the same direction as \mathbf{r} and and magnitude of 1 .
The magnitude of \mathbf{r} is $|\mathbf{r}|=\sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}}$
In this case, $r_{x}=0, r_{y}=4$ and $r_{z}=2$ giving $|\mathbf{r}|=\sqrt{0^{2}+4^{2}+2^{2}}=2 \sqrt{5}$.
This gives the unit vector $\frac{1}{|r|} \mathbf{r}=\frac{1}{2 \sqrt{5}}\left(4 \mathbf{e}_{y}+2 \mathbf{e}_{z}\right)$
and so $\hat{\mathbf{r}}=\frac{2 \mathbf{e}_{y}}{\sqrt{5}}+\frac{\mathbf{e}_{z}}{\sqrt{5}}$

See An Introduction to Vector Algebra Section 2.

Scaling a vector

$\mathbf{a}=2 \mathbf{e}_{x}+\mathbf{e}_{z}$, write down $2 \mathbf{a}$.
$2 \mathbf{a}=$
yype ei for \mathbf{e}_{x}, ey for \mathbf{e}_{y} and ez for \mathbf{e}_{z}.)

For a vector \mathbf{a} and a (non-zero) scalar λ, the scalar multiple $\lambda \mathbf{a}$ is the vector whose magnitude is
$|\lambda||\mathbf{a}|$, and has the same direction as \mathbf{a} if $\lambda>0$ or the opposite direction to \mathbf{a} if $\lambda<0$.
In this case, the scale factor is 2 . Each component is multiplied by the scale factor, giving $2 \mathbf{a}=4 \mathbf{e}_{x}+2 \mathbf{e}_{z}$

See An Introduction to Vector Algebra Section 2

Question 5 Not answered

Marked out of 1.00

Vector products

Determine the vector product $\mathbf{b} \times \mathbf{a}$ given $\mathbf{a}=\mathbf{e}_{x}-5 \mathbf{e}_{y}$ and $\mathbf{b}=2 \mathbf{e}_{x}-3 \mathbf{e}_{z}$.
(Type eif for \mathbf{e}_{x}, ey for \mathbf{e}_{y} and ez for \mathbf{e}_{z}.)
$\mathbf{b} \times \mathbf{a}=$ \qquad
\(\mathbf{b} \times \mathbf{a}=\left|\begin{array}{lll}\mathbf{e}_{x} \& \mathbf{e}_{y} \& \mathbf{e}_{z}

b_{x} \& b_{y} \& b_{z}

a_{x} \& a_{y} \& a_{z}\end{array}\right|=|\)| \mathbf{e}_{x} | \mathbf{e}_{y} | \mathbf{e}_{z} |
| :---: | :---: | :---: |
| 2 | 0 | -3 |
| 1 | -5 | 0 |

$=-15 \mathbf{e}_{x}-3 \mathbf{e}_{y}-10 \mathbf{e}_{z}$.
See An Introduction to Vector Algebra 4.2.

Question 6 Not answered
Marked out of 1.00

Trigonometry

Given $f(x)=-\cos ^{2}(x)+\sin ^{2}(x)$, write $f(x)$ in terms of $\cos (2 x)$

The following equations are well-known trigonometrical identities:
$\cos ^{2}(x)+\sin ^{2}(x)=1$,
$\cos ^{2}(x)-\sin ^{2}(x)=\cos (2 x)$
and $\sin (2 x)=\cos (x) \sin (x)$.

These can be combined and rearranged to give
$\cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x))$,
$\sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))$
and $\sin ^{2}(2 x)=1-\cos ^{2}(2 x)$.

These equations can be used to show that
$f(x)=-\cos ^{2}(x)+\sin ^{2}(x)$
$=\frac{-1-\cos (2 x)}{2}+\frac{1-\cos (2 x)}{2}$
$=-\cos (2 x)$

See Algebra and other useful mathematical notation Section 4

Question 7 Not answered

Marked out of 1.0
Finding the square modulus of a complex number

```
Given z=3+7i where i }=\sqrt{}{-1
Determine }|z\mp@subsup{|}{}{2}\mathrm{ , the square modulus of }z\mathrm{ .
    |3+7i\mp@subsup{|}{}{2}=
```

\qquad

```
    |z\mp@subsup{|}{}{2}=\mp@subsup{z}{}{*}z=(x-yi)(x+yi)=\mp@subsup{x}{}{2}+xy\textrm{i}-xy\textrm{i}+\mp@subsup{y}{}{2}=\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}.
    Therefore, }|3+7\textrm{i}\mp@subsup{|}{}{2}=(3-7\textrm{i})(3+7\textrm{i})=9+49=58
    See Complex numbers Section 1.
```

Question 8 Not answered
Marked out of 1.00

Finding the square of a complex number

```
Given z=-7+4i where i = \sqrt{}{-1}
Determine }\mp@subsup{z}{}{2}\mathrm{ , the square of z
    (-7+4i)}\mp@subsup{)}{}{2}
    z
    Therefore, z}\mp@subsup{z}{}{2}=(-7+4i\mp@subsup{)}{}{2}=49-56\textrm{i}-16=33-56\textrm{i}
    See Complex numbers Section 1.
```

Question 9 Not answered
Marked out of 1.00
The polar form of complex numbers
Given the complex number $z=\frac{\sqrt{3}}{2}-\frac{1}{2}$ which has the Cartesian coordinates $(x, y)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$. Determine the polar coordinates (r, θ) of z.
(Type pi for π.)
$r=\square$ \square

The polar form of a complex number is $z=r(\cos \theta+\mathrm{i} \sin \theta)$.

where the radial coordinate, $r=\sqrt{x^{2}+y^{2}}$ and the angular coordinate is θ. A unique value of θ is chosen with $-\pi<\theta \leq \pi . \theta$ can be calculated by solving $\tan \theta=y / x$ and making sure that θ is in the correct quadrant.
In this case, $r=\sqrt{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=1$ and $\tan \theta=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{1}{\sqrt{3}}$. Choosing θ in the correct
quadrant gives $\theta=-\frac{\pi}{6}$.

See Complex numbers Section 2

Question 10 Not answered

Marked out of 1.00

Complex numbers and Euler's formula

Given $z=e^{8 i x}$ where x is real.
Write down $\operatorname{Re}(z)$, the real part of z.
$\operatorname{Re}(z)=$

Using Euler's formula, $z=A e^{i k x}=A(\cos (k x)+\mathrm{i} \sin (k x))$ gives
$z=e^{8 \mathrm{i} x}=\cos (8 x)+\mathrm{i} \sin (8 x)$,
so the real part of z is $\cos (8 x)$.
See Complex numbers Section 3.

Question 11 Not answered
Marked out of 1.00

Complex numbers and Euler's formula

Given $z=8 e^{-4 \mathrm{i} x}$ where x is real
Write down $\operatorname{lm}(z)$, the imaginary part of z,
$\operatorname{lm}(z)=$

Using Euler's formula, $z=A e^{i k x}=A(\cos (k x)+\mathrm{i} \sin (k x))$ gives
$z=8 e^{-4 \mathrm{i} x}=8 \cos (4 x)-8 \mathrm{i} \sin (4 x)$,
so the imaginary part of z is $-8 \sin (4 x)$.
See Complex numbers Section 3.

Question 12 Not answered
Marked out of 1.00

Cylindrical coordinates

Express the point given by Cartesian coordinates, $(x, y, z)=(1,0,-1)$, in cylindrical coordinates
(r, ϕ, z).

Spherical coordinates

Express the point given by Cartesian coordinates, $(x, y, z)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1\right)$, in spherical coordinates (r, θ, ϕ).

Your angles must be given in radians.
(Type sqrt(a) for \sqrt{a} and pi for π.)
$r=$
$\theta=$
$\phi=\square$

The spherical coordinates (r, θ, ϕ) of a point are related to the Cartesian coordinates (x, y, z) of
the same point by $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}, \cos \theta=\frac{z}{r}, \tan \phi=\frac{y}{x}$ and $\cos \phi=\frac{x}{r \sin \theta}$.
In this case, $x=\frac{1}{\sqrt{2}}, y=\frac{1}{\sqrt{2}}$ and $z=1$ giving
$r=\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+(1)^{2}}=\sqrt{2}, \cos \theta=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}$ giving $\theta=\frac{\pi}{4}$ and $\tan \phi=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1$
and $\cos \phi=\frac{\left(\frac{1}{\sqrt{2}}\right)}{\left(\sqrt{2} \sin \left(\frac{\pi}{4}\right)\right)}=\frac{1}{\sqrt{2}}$ giving $\phi=\frac{\pi}{4}$.

See Coordinate systems Section 4

Question 14 Not answered

The determinant of a matrix

```
Calculate the determinant of \(\mathbf{A}=\left(\begin{array}{ccc}a & b & c \\ x & 0 & y \\ x & z & -y\end{array}\right)\).
\(\operatorname{det} \mathbf{A}=\)
    For a \(3 \times 3\) matrix, the determinant is given by
    \(\begin{aligned} \operatorname{det} \mathbf{A} & =\left[\left.\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array} \right\rvert\,\right. \\ & =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)\end{aligned}\)
    \(=a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)-a_{2}\left(b_{1} c_{3}-b_{3} c_{1}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)\).
So for the matrix \(\mathbf{A}=\left(\begin{array}{ccc}a & b & c \\ x & 0 & y \\ x & z & -y\end{array}\right)\),
the determinant is \(-a y z+c x z+2 b x y\)
See Matrices and determinants Section 4
```

Question 15 Not answered
Marked out of 1.00
Sum notation
Evaluate
(a)
$S_{1}=\sum_{j=1}^{4} j$.
$S_{1}=$
(b)
$S_{2}=\sum_{j=1}^{2}\left(j^{2}+1\right)$.
$S_{2}=$

Given a set of numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, then
$\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$.
Therefore,
$\sum_{j=1}^{4} j=1+2+3+4=10$
and

$$
\sum_{j=1}^{2}\left(j^{2}+1\right)=2+5=7
$$

Differentiating using the product rule

```
Differentiate \(y=\frac{\sin (x)}{a^{2}+x^{2}}\), with respect to \(x\).
\(\frac{\mathrm{dy}}{\mathrm{d} x}=\)
If \(u\) and \(v\) are functions of \(x\), the product rule gives
    \(\frac{\mathrm{d}}{\mathrm{d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}\).
Using the product rule for \(y=\frac{\sin (x)}{a^{2}+x^{2}}\), and letting \(u=\frac{1}{a^{2}+x^{2}}\) and \(v=\sin (x)\) gives
    \(\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{1}{a^{2}+x^{2}}\right) \frac{\mathrm{d}}{\mathrm{d} x}(\sin (x))+(\sin (x)) \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{a^{2}+x^{2}}\right)\)
    \(=\left(\frac{1}{a^{2}+x^{2}}\right)(\cos (x))+\left(-\frac{2 x}{\left(a^{2}+x^{2}\right)^{2}}\right)(\sin (x))\)
    \(=\frac{\cos (x)}{a^{2}+x^{2}}-\frac{2 x \sin (x)}{\left(a^{2}+x^{2}\right)^{2}}\)
See Differentiation Section 2.3
```


Question 17 Not answered

Differentiating an exponential function once

Differentiate $u(t)=2 \mathrm{e}^{2 \mathrm{i} a t}$, with respect to t, where a is a constant and
$\mathrm{i}=\sqrt{-1}$.
$\frac{\mathrm{d} u}{\mathrm{~d} t}=$

Using the composite or chain rule with $u=2 \mathrm{e}^{2 \mathrm{i} a t}$, we have
$\frac{\mathrm{d} u}{\mathrm{~d} t}=2 \mathrm{e}^{2 \mathrm{i} a t} \times \frac{\mathrm{d}}{\mathrm{d} t}(2 \mathrm{i} a t)$
$=4 \mathrm{i} a \mathrm{e}^{2 \mathrm{iat}}$.
See Differentiation Section 2.4

Question 18 Not answered

Marked out of 1.00

Differentiating an exponential function twice

```
Given }u(t)=3\mp@subsup{\textrm{e}}{}{-\textrm{i}at}\mathrm{ , where a}\mathrm{ is a constant and i}=\sqrt{}{-1}\mathrm{ . Determine the second order differential,
\frac{d}{}\mp@code{2}u
\frac{\mp@subsup{d}{}{2}u}{d\mp@subsup{t}{}{2}}=
Using the composite or chain rule with u}=3\mp@subsup{\textrm{e}}{}{-\textrm{i}at}\mathrm{ , we have
    \frac{d}{\textrm{d}}t=3\mp@subsup{\textrm{e}}{}{-\textrm{i}at}\times\frac{\textrm{d}}{\textrm{d}t}(-\textrm{i}at)
    =-3ia }\mp@subsup{\textrm{e}}{}{-\textrm{i}at}\mathrm{ .
    \frac{\mp@subsup{\textrm{d}}{}{2}u}{\textrm{d}\mp@subsup{t}{}{2}}=-3\textrm{i}a\frac{\textrm{d}}{\textrm{d}t}(\mp@subsup{\textrm{e}}{}{-\textrm{i}at})=-3\textrm{i}a(-\textrm{i}a\mp@subsup{\textrm{e}}{}{-\textrm{i}at})
```



```
The final simplication used i}\mp@subsup{}{}{2}=-1
```


Linear differential equations

```
(a) Find the values of }k\mathrm{ for which }\operatorname{cos}(kt)\mathrm{ and }\operatorname{sin}(kt)\mathrm{ are solutions of the differential equation
    d}\frac{\mp@subsup{d}{}{2}y}{d\mp@subsup{t}{}{2}}+9y=0
k=\square
or
```

(b) Select a linear combination of the solutions in part (a) which is a general solution to the differential
equation.
(No answer given)
$y=\alpha \cos (k t)+\beta \sin (k t)$
$y=\beta \sin (k t)$
$y=\alpha \cos (k t)$
(c) Select the property of the differentiar equation that guarantees that this inear combination is
solution
(No answer given) \checkmark
(a) Consider $y=\cos (k t)$, then
$\frac{\mathrm{d} y}{\mathrm{~d} t}=-k \sin (k t) \quad$ and $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=-k^{2} \cos (k t)$.
Substituting for y and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$ into the original differential equation gives
$-k^{2} \cos (k t)+9 \cos (k t)=0$
This equation must be valid for all values of t, therefore
$-k^{2}+9=0$
$k^{2}=9$
$k= \pm 3$.
Similarly for $y=\sin (k t)$, the solution is $k= \pm 3$.
(b) The solutions in part (a) are $y=\cos (3 t)$ and $y= \pm \sin (3 t)$. An arbitrary linear combination
of them is $y=\alpha \cos (3 t)+\beta \sin (3 t)$ where α and β are arbitrary constants. As there are two
arbitrary constants and this is a second order differential equation, this is a general solution.
(c) The fact that the differential equation is linear guarantees that this is a solution
See Differential equations Sections 2 and 4 .

Question 20 Not answered

Marked out of 1.00
Integration by substitution

```
Evaluate the integral
    \(I=\int_{0}^{q}-\frac{r}{b r^{2}+4} \mathrm{~d} r\)
where \(b\) and \(q\) are positive constants.
\(I=\)
The method to use is integration by substitution and this is a definite integral
Let \(u=b r^{2}+4\), then \(\frac{d u}{d r}=2 b r\)
The limits of integration \(r=0\) and \(r=q\) correspond to \(u=4\) and \(u=b q^{2}+4\). Hence
        \(\int_{r=0}^{r=q}-\frac{r}{b r^{2}+4} \mathrm{~d} r=\left(-\frac{1}{2 b}\right) \int_{u=4}^{u=b q^{2}+4} \frac{1}{u} \mathrm{~d} u\)
            \(=\left(-\frac{1}{2 b}\right)[\ln (u)]_{u=4}^{u=b q^{2}}\)
    \(=\frac{\ln (4)}{2 b}-\frac{\ln \left(b q^{2}+4\right)}{2 b}\).
See Integration 4.3 and 5.
```


Question 21 Not answered

Marked out of 1.00
The gradient of a scalar field
Consider $f=-z+3 z^{2}$
Evaluate grad f.
(Type ei to input \mathbf{e}_{x}, ey to input \mathbf{e}_{y} and ez to input \mathbf{e}_{z}.)
$\operatorname{grad} f=$

The gradient of a scalar field, f is a vector field given by
$\mathbf{F}=\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x} \mathbf{e}_{x}+\frac{\partial f}{\partial y} \mathbf{e}_{y}+\frac{\partial f}{\partial z} \mathbf{e}_{z}$.

In this case, $f=-z+3 z^{2}$, so tha
$\frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0$, and $\frac{\partial f}{\partial z}=-1+6 z$,
which gives the vector field
$\mathbf{F}=(-1+6 z) \mathbf{e}_{z}$.

The divergence of a vector field in spherical coordinates

Consider the vector field

$$
\mathbf{F}=\left(-\frac{\cos (\theta)}{r^{2}}\right) \mathbf{e}_{r}+(-r) \mathbf{e}_{\theta}+(-r \cos (\theta)) \mathbf{e}_{\phi}
$$

which is written in spherical coordinates, (r, θ, ϕ).
Evaluate the divergence of \mathbf{F}.
In your answer type r for coordinate r, theta for coordinate θ and phi for coordinate ϕ.
$\operatorname{div} \mathbf{F}=$

```
In spherical coordinates
\(\operatorname{div} \mathbf{F}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} F_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta F_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}\)
In this case \(F_{r}=-\frac{\cos (\theta)}{r^{2}}, F_{\theta}=-r\) and \(F_{\phi}=-r \cos (\theta)\),
giving
\(\frac{\partial\left(r^{2} F_{r}\right)}{\partial r}=\frac{\partial\left(r^{2}\left(-\frac{\cos (\theta)}{r^{2}}\right)\right)}{\partial r}=\frac{\partial(-\cos (\theta))}{\partial r}=0\)
and
\(\frac{\partial\left(\sin \theta F_{\theta}\right)}{\partial \theta}=\frac{\partial(\sin \theta(-r))}{\partial \theta}=\frac{\partial(-r \sin (\theta))}{\partial \theta}=-r \cos (\theta)\)
and
\(F_{\phi}\) is independent of \(\phi\) so that \(\frac{\partial\left(F_{\phi}\right)}{\partial \phi}=0\).
Bringing everything together give
\(\operatorname{div} \mathbf{F}=\frac{1}{r^{2}}(0)+\frac{1}{r \sin \theta}(-r \cos (\theta))\)
    \(=-\frac{\cos (\theta)}{\sin (\theta)}\)
See Vector calculus and fields Section 3.
```

Question 23 Not answered
Marked out of 1.00

The curl of a vector field

Consider $\mathbf{A}=-2 y z \mathbf{e}_{x}-5 x y \mathbf{e}_{y}+4 x^{2} \mathbf{e}_{z}$.
Find the curl of \mathbf{A}.
(Type ei to input \mathbf{e}_{x}, ey to input \mathbf{e}_{y} and ez to input \mathbf{e}_{z}.)
$\operatorname{curl} \mathbf{A}=$

$$
\begin{aligned}
\operatorname{curl} \mathbf{A} & =\left|\begin{array}{ccc}
\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-2 y z & -5 x y & 4 x^{2}
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y}\left(4 x^{2}\right)-\frac{\partial}{\partial z}(-5 x y)\right) \mathbf{e}_{x}+\left(\frac{\partial}{\partial z}(-2 y z)-\frac{\partial}{\partial x}\left(4 x^{2}\right)\right) \mathbf{e}_{y}+\left(\frac{\partial}{\partial x}\right. \\
& =((0)-(0)) \mathbf{e}_{x}+((-2 y)-(8 x)) \mathbf{e}_{y}+((-5 y)-(-2 z)) \mathbf{e}_{z} \\
& =(-8 x-2 y) \mathbf{e}_{y}+(-5 y+2 z) \mathbf{e}_{z}
\end{aligned}
$$

See Vector calculus and fields Section 5

Question 24 Not answered
Marked out of 1.00

Line integrals

$$
\begin{aligned}
& \quad I=\int_{C} \mathbf{E} \cdot \mathrm{~d} \mathbf{l} \text {, } \\
& \text { where } \mathbf{E}=x^{3} \mathbf{e}_{x}+2 y \mathbf{e}_{y}+z^{3} \mathbf{e}_{z} \text { and } C \text { is the path from }(0,0,0) \text { to }(1,0,0) \text { to }(1,1,0) \text {. } \\
& I= \\
& \text { For the path from }(0,0,0) \text { to }(1,0,0) \text {, a small directed element along the path is } \delta \mathbf{l}=\mathbf{e}_{x} \delta x \text {. } \\
& \text { Then } \mathbf{E} \cdot \mathrm{d} \mathbf{l}=x^{3} \mathrm{~d} x \text { and } I_{1}=\int_{0}^{1} x^{3} \mathrm{~d} x=\frac{1}{4} \text {. } \\
& \text { For the path from }(1,0,0) \text { to }(1,1,0) \text {, a small directed element along the path is } \delta \mathbf{l}=\mathbf{e}_{y} \delta y \text {. } \\
& \text { Then } \mathbf{E} \cdot \mathrm{d} \mathbf{l}=2 y \mathrm{~d} y \text { and } I_{2}=\int_{0}^{1} 2 y \mathrm{~d} y=1 \text {. } \\
& \text { The total line integral is } I=I_{1}+I_{2}=\frac{1}{4}+\mathbf{1}=\frac{5}{4} \text {. } \\
& \text { See Vector calculus and fields Section } 4 \text {. }
\end{aligned}
$$

Volume integrals

```
\(I=\int_{B} 4 r^{2} \mathrm{~d} V\)
```



```
(Type pi to enter \(\pi\) ).
\(I=\square\)
```

The integrand does not depend on the spherical coordinates θ and ϕ. Consequently, the quickest way of doing the integral is to split the sphere into many spherical shells. A typical spherical shell way of doing the integral is to split the sphere into many spherical shells. A ty
has radius r, thickness δr and volume $4 \pi r^{2} \delta r$. The volume integral is then
$\int_{B} 4 r^{2} \mathrm{~d} V=\int_{0}^{a} 4 r^{2} \times 4 \pi r^{2} \mathrm{dr}$
$=16 \pi \int_{0}^{a} r^{4} \mathrm{~d} r$
$=\frac{16 \pi a^{5}}{5}$.
Aternatively, a method which would work in more general cases is
$\int_{B} 4 r^{2} \mathrm{~d} V=\int_{r=0}^{r=a} \int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=2 \pi} 4 r^{2} \times r^{2} \sin \theta \mathrm{~d} \phi \mathrm{~d} \theta \mathrm{~d} r$
$=\int_{r=0}^{r=a} \int_{\theta=0}^{\theta=\pi} 2 \pi \times 4 r^{4} \sin \theta \mathrm{~d} \theta \mathrm{~d} r$
$=\int_{0}^{a} 2 \times 2 \pi \times 4 r^{4} \mathrm{~d} r$
$=16 \pi \int_{0}^{a} r^{4} \mathrm{~d} r$
$=\frac{16 \pi a^{5}}{5}$.

[^0]: Physics, astronomy and planetary science > Discover > Prepare and make a head start >Preparation for Level 3 physics modules > SM381 Electromagnetism >Are You Ready For SM381?

