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Infroduction

Number theory can be categorized into at least four interrelated areas.
In previous courses on number theory you will probably have studied
elementary number theory, in which all concepts and proofs arise from
the subject matter itself and do not involve results from other branches
of mathematics. (The word elementary does not refer to the sim-
plicity of the material — some ‘elementary’ proofs are highly compli-
cated and difficult to follow.) In this course we study analytic number
theory, in which extensive use is made of techniques from analysis —
in particular, the summation of series in real analysis

This course is based on Chapters 1-7 and 9 of Introduction to Analytic
Number Theory by T. M. Apostol. These Course Notes will guide you
through Apostol’s book, telling you which sections to read, explain-
ing difficult points, and setting Self-assessment Questions (SAQs) and
Problems to test your understanding of the material. You should at-
tempt all of the SAQs and as many Problems as you have time for; full
solutions will be found at the end of the Course Notes. (You will need
a pocket calculator for several of the problems, so please make sure you
have one available.)

To help you organize your work, we have divided each chapter into three
or four study sessions, each covering several sections of the book and
each planned to correspond to about three hours” work — although the
time spent may vary widely from student to student. Do not become
unduly discouraged if some of the material seems difficult or time-
consuming. In particular, you may find that Chapters 3 and 4 are
harder than Chapters 5 and 6, and that the material at the end of the
course is rather heavy going. We have tried to alleviate the difficulties,
in our commentaries, and we have made several of the sections in the
book optional, but you should not expect this course to be an easy one.

In order to pace you through the course, we have set four Tutor-marked
Assignments (TMAs). These are compulsory in that you cannot pass
the course without obtaining a reasonable average grade on them.

It is possible that there are errors in these notes, and that we have
not found all the errors in Apostol’s book. We should be grateful if
you could inform us of any errors or misprints and of any suggested
improvements to the Course Notes.




Historical infroduction and Chapter 1
The fundamental theorem of arithmetic

The book starts with a historical introduction which is designed to set
the scene for the work that follows. In Chapter 1, the basic notions of
divisibility, greatest common divisor and prime number are introduced,
and a number of important basic results are proved. These include the
fundamental theorem of arithmetic, the Euclidean algorithm and the
fact that there are infinitely many primes. Even if you are familiar with
this material, you should read it carefully so as to accustom yourself
to Apostol’s style and notation.

This material splits into THREE study sessions.

Study Session 1: Historical introduction (pages 1-12)
Study Session 2: Sections 1.1-1.4 (pages 13-17)
Study Session 3: Sections 1.5-1.8 (pages 17-21)

Study Session 1:
Historical intfroduction (pages 1-12)

Read pages 1-5

Commentary

1. The top of page 2. Note that here, as in much of this book, the words
integer and number are taken to mean positive integer. The context will
make it clear as to which meaning is intended.

2. Figure I.1. Note that, for each sequence, the nth term can be obtained by
summing an arithmetic progression. For example, the nth square number is
the sum of the arithmetic progression

14+3+5+7+-+(2n—1)=n

3.  Page 4, line 2. We present Euclid’s proof that there are infinitely many
primes in Chapter 1.

4. The bottom of page 4. Since Apostol’s book appeared, further Mersenne
primes (and, hence, perfect numbers) have been discovered — for example,

for p =216 091.

5. The top of page 5. Tt is now known that any odd perfect number (if it
exists) must be greater than 10100,

Self-assessment questions
1.1  Write down all the prime numbers between 100 and 150.

1.2  Find a formula for
(a) the nth triangular number;

(b) the nth pentagonal number.



1.3

14

1.5

1.6

(a) Verify that 22 + y? = 2% when
(i) z=ny=30n*-1), 2= 30" +1);
(i) 2=4n,y=4n> -1,z =4n? +1;
(iii) @ = t(a® —b?), y = 2tab, z = t(a® + b?).

(b) In part (iii), which numbers a, b and ¢ give rise to the Pythagorean
triples 12, 35, 37 and 9, 12, 157

(a) Why does the formula 2P~1(2P — 1) fail to give a perfect number when
p=117

(b) Prove that 2P~1(2P — 1) is always a perfect number when p and 2P — 1
are primes.

Express each of the numbers 30, 35 and 40 as
(a) a triangular number or a sum of 2 or 3 triangular numbers;
(b) a square or a sum of 2, 3 or 4 squares;

(c) a pentagonal number or a sum of 2, 3, 4 or 5 pentagonal numbers.

Express each of the prime numbers 53, 61 and 73 as a sum of two squares.

Read pages 6-12

Commentary

1.

Page 6, paragraph 3. Tt is easy to produce a sequence of consecutive
composite numbers with any required length. A method for doing this is
given in SAQ 1.7.

The top of page 7. A proof that there are infinitely many primes of the form
4n + 3 is given in the notes for Chapter 1. Dirichlet’s theorem on primes in
an arithmetic progression is proved in Chapter 7.

The middle of page 7. In connection with polynomials which represent
infinitely many primes, it was proved in 1976 that there is a polynomial of
degree 25 in twenty-six variables such that, whenever non-negative integers
are substituted for the variables, the positive values taken by the polynomial
are the prime numbers 2,3,5,7,....

The greatest integer function. Note that, for example, 7] = [3] = 3 and
[—1%} = —2. The greatest integer function is of great importance in number
theory, and some practice in using it is given in SAQ 1.10.

The definition of w(x). Note, for example, that 7(10) = 4 (corresponding to
the primes 2, 3, 5 and 7) and 7(100) = 25 (corresponding to the primes listed
on page 2).

The prime number theorem (page 9). Riemann’s ‘zeta function’ ((s) is
introduced briefly in Chapter 2 and studied in depth in Chapters 11 and 12.
The prime number theorem appears in Chapter 4 and is proved in

Chapter 13. A brief sketch of an ‘elementary proof’ that does not involve
{(s) is given in Chapter 4.

Pages 10-11. More recently, in connection with Goldbach’s conjecture,
Chen Jing-run and Wang Tian-ze have proved that every odd number

n> e " is the sum of three primes, and R. C. Vaughan has proved that
every number is the sum of at most nine primes. The important feature
about the first result is that, in spite of the enormous number involved, the
number of unsolved cases is finite.



Fermat’s conjecture (bottom of page 9). Apart from ‘trivial’ solutions (such
as when z or y is 0), no solutions of the equation ™ + y™ = z" are known for
any value of n > 3, and Fermat believed that he could prove that no
non-trivial solutions exist. But for many years no such proof was found, and
the finding of a proof or counter-example remained one of the most famous
unsolved problems in mathematics. Using techniques from algebraic number
theory, one can prove it for infinitely many values of n, but it remained
unproved in general. Eventually, a proof was announced by Andrew Wiles,
but a gap was later found. This gap was filled in January 1995, and the proof
is now complete; see the book by S. Singh for an informal introduction to
Wiles’s proof.

The note on page 12. LeVeque’s Reviews in Number Theory has been
updated by Richard Guy, providing a catalogue of the main discoveries in
number theory right up to the 1980s.

Self-assessment questions

1.7

1.8

1.9

1.10

1.12

(a) Show that the following is a sequence of n consecutive composite
numbers:

(m+1)!4+2, (n+1)!+3, ..., (n+DI+(n+1).
(b) Write down a sequence of 100 consecutive composite numbers.

Prove that the quadratic polynomial 22 + ax + b cannot give prime
numbers for all values of x =0,1,2,....

In the statement of Dirichlet’s theorem on primes in an arithmetic
progression (page 7), why is it necessary to require that a and b have no
prime factor in common?

If [x] denotes the greatest integer < z, prove that:
(a) [z +n] = [z] +n, if n is an integer;
(b) [22] —2[z] =0 or 1.

Calculate 7(z) + =/ log x when (a) x = 50, (b) x = 150.

The following problems relate to the list of unsolved problems on page 11.
(a) Verify the truth of the Goldbach conjecture when

n = 30,32,...,40. (Problem 1)
(b) Express each of the even numbers n = 30,32, ...,40 as

the difference of two primes. (Problem 2)
(c¢) List five pairs of twin primes. (Problem 3)

(d) List five primes of the form 22 + 1, where x is an integer. (Problem 8)

(e) List three primes of the form z2 4 2, where z is an

integer. (Problem 9)
(f) Find a prime between n? and (n + 1), for

n=2=6,7,8,9,10. (Problem 10)

(g) Find a prime between n? and n? + n, for
n=2=6,7,8,9,10. (Problem 11)




Stu

dy Session 2: Sections 1.1-1.4 (pages 13-17)

Read Sections 1.1 and 1.2

Commentary

1.

The principle of induction. When proving results by induction, it is usual to
avoid any reference to @ and simply to verify the result for n =1 and prove
that if the result is true for n then it is true for n + 1. The alternative
version for (b) — ‘1,2,3,...,n € @ implies n + 1 € * — is sometimes called
the principle of strong induction, and states that if ‘the result is true for all
k < n’, implies that ‘it is also true for £k = n + 1’, then it is true for all n.

The well-ordering principle. Note that although the well-ordering principle
is a property of the positive integers, it does not necessarily hold for some
other sets, such as the sets of positive rational numbers and positive real
numbers. For example, there is no smallest positive rational number and
there is no smallest real number > 2.

Theorem 1.1. In reading through these results you should convince yourself
that each one is true and that you know how to prove it. An example of the
type of proof required is as follows.

Proof of (b). 1If d|n and n|m, then n = rd and m = sn, for some integers r
and s. So m = (rs)d, and hence d|m.

Self-assessment questions

1.13

1.14

1.15

(2n)!

, for all n.
nln!

Prove by induction that 2™ <

Deduce the principle of induction from the well-ordering principle.
[Hint: assume that the principle of induction is false and let n + 1 be the
smallest number not in Q.]

Prove parts (c), (e), (j) and (k) of Theorem 1.1.

Read Section 1.3

Commentary

1.

The proof of Theorem 1.2. This proof divides into two parts, corresponding
toa > 0,b> 0 and to a and/or b < 0. The proof for a > 0,b > 0 uses the
principle of strong induction, where we assume the result for
0,1,2,...,a+b—1 and prove it for n = a + b. By induction we can write

d = (a —b)x + by (since (a —b) + b < n) and we use the fact that if d|(a — D)
and d|b then d]a.

The definition of (a,b). As its name suggests, the greatest common divisor
of a and b is the largest positive integer which divides both a and b. It is
divisible by all other common divisors of @ and b. The term coprime is
sometimes used instead of relatively prime, when (a,b) = 1.

A general method for
determining d is given in
Section 1.7.



3.

The proofs of Theorems 1.4 and 1.5. Note the use of the equation
d = ax + by in these proofs. Note also that this equation has a solution in
integers z,y if and only if (a,b) divides d.

Self-assessment questions

1.16

1.17

1.18

Write down the following greatest common divisors d = (a,b), and express
your results in the form d = ax + by.

(a) (25,5)  (b) (30,—18)  (c) (9,25)  (d) (—21,-57)

Prove part (b) of Theorem 1.4, and verify that it holds when a = 42,
b="70 and c = 30.

Prove that if (a,b) = d, then (a/d,b/d) = 1.

Read Section 1.4

Commentary

1.

In order to find all the primes up to a given number x, we write down the
numbers 2,3, ...,z and cross out all the multiples of 2 (other than 2 itself),
of 3 (other than 3 itself), and so on through all the primes up to v/«

(see SAQ 1.19). The numbers that remain are the primes up to x. (This is
called the Sieve of Eratosthenes.)

The proof of Theorem 1.7. Instead of taking N = p1ps...p, + 1, we could
have taken N = p! + 1, where p is the largest of the primes p;, or

N =pop3...pp+D1P3...Dn+ - +p1P2...Pn1

(see SAQ 1.20).

Self-assessment questions

1.19

1.20

1.21

(a) Prove that if n is composite then it has a prime divisor that does not
exceed /n. Deduce that in using the Sieve of Eratosthenes
(see Commentary 1), we need check only the primes up to /z.

(b) Use the Sieve of Eratosthenes to find all the primes between 150
and 200.

Show that in Euclid’s proof of Theorem 1.7 we can replace
N = p1ps...p, + 1 by the displayed expression in Commentary 2.

Explain why n* 4 4 is composite for n > 1.

Problems for Sections 1.1-1.4

1A Apostol, page 21, numbers 1 and 2.

1B Apostol, page 21, number 7.

1C Apostol, page 22, number 16.



1D Let p, be the nth prime (when arranged in increasing order).

1E

Prove that p,4+1 < p1...pn + 1, and use this result to prove by induction
that p, < 22" .

By considering the number 4p; ...p, — 1, and imitating the proof of
Theorem 1.7, prove that there are infinitely many primes of the form 4k + 3.

Study Session 3: Sections 1.5-1.8 (pages 17-21)

Read Section 1.5

Commentary

1.

The fundamental theorem of arithmetic. This theorem is, in some sense, the
foundation on which the whole of number theory is built, and is sometimes
expressed by saying that the integers form a unique factorization domain.
Note that some number systems, such as the even integers, do not form a
unique factorization domain (see Problem 1H).

The proof of Theorem 1.10. The proof relies heavily on Theorem 1.9.

Note that in the last paragraph we can repeat the argument given earlier to
deduce that py = g2 (after relabelling), p3 = g3, and so on. The induction
step is used to make this informal argument precise.

n=p7...p%. If the p; are arranged in increasing order, then this
factorization of n is sometimes called the canonical form of the factorization.
For example, if n = 4200, then the canonical form of the factorization is
4200 =23 -3-52.7.

The statement of Theorem 1.12. 'This result, and the Euclidean algorithm
in Section 1.7, are the two principal methods for obtaining the greatest
common divisor of a and b. We can find the least common multiple of a
and b, denoted by [a, b], by using the corresponding result in which

¢; = max{a;, b;} (see SAQ 1.24 and Problem 1J).

Self-assessment questions

1.22 Express each of the following numbers as a product of primes, giving your

1.23

answers in canonical form (see Commentary 3).
(a) 1000 (b) 2310 (c) 4116 (d) 2187

(a) Verify the statement of Theorem 1.11 by writing down the prime
factorizations of all the positive divisors of 60 = 22 -3 - 5.

(b) Use Theorem 1.11 to prove that the number of positive divisors of
n=p*...pi" is
(a1 +1D)(ag+1)...(ar +1).

(¢) Use part (b) to find the number of positive divisors of each of the
numbers in SAQ 1.22.



1.24 (a) Use Theorem 1.12 and the results of SAQ 1.22 to evaluate the
following geds.

(i) (1000,2310) (i) (2310,4116)  (iii) (1000,2187)

(b) Use Commentary 4 and the results of SAQ 1.22 to evaluate the
following lems.
(i) [1000,2310] (ii) [2310,4116] (iii) [1000,2187]

Read Section 1.6

Commentary

1
1. The statement of Theorem 1.13. Tt is well known that E — diverges,
n
n=1

although a slight modification to Z n 10001 oy Z 5 produces a

log n)
convergent series. Here we prove that if we throw away all the terms 1/n
where n is composite (that is, we throw away ‘most’ of the terms), we still
have a divergent series!

2. The proof of Theorem 1.13. Having chosen a number £ such that

Z pm , we consider the numbers py...px + 1, 2p1...px + 1,
m=k+1
3p1...pr +1,..., none of which is divisible by p1, ..., pk.

The main step is to add the reciprocals of these numbers, and write

2
1 1 — 1 — 1
. ) +< 3 ) T
pre..pp+1 rp1pet L S P\ S P

since each term on the left must appear somewhere on the right. So, by the
comparison test, » 1/(1 + nQ) converges. But

1 1 1 11 1
+ + Fee >
Q+1 20+1 3Q+1 2Q ' 3Q ' 4Q

which diverges. This gives us the required contradiction.

3. The last sentence of Section 1.6. The result referred to is Theorem 4.12 on
page 90. It shows that the series diverges very slowly; for example, the

1 1
smallest prime p,, for which — 4 --- 4+ — > 2 is pgg = 277.
Y41 Pn

Self-assessment questions

1 1 1
1.25 Find the smallest prime p,, for which — + — +---+ — > k, where
b1 D2 Pn
(a) k=1, (b) k=125.

1.26 Use Theorem 1.13 to deduce that there are infinitely many primes.



Read Sections 1.7 and 1.8

Commentary

1.

The proof of Theorem 1.14. Note the use of the well-ordering principle in
line 3 of the proof.

The proof of Theorem 1.15. Notice that to show that r, is a common
divisor of a and b we work from the bottom equation upwards, whereas to
show that d|r,, we work from the top equation downwards.

d = ax + by. To express the greatest common divisor in the form ax + by
(as in Theorem 1.2), we start from the last-but-one equation (ending with
r,) and work upwards. The following example will make the method clear.

Ezample Find d = (82,24), and write d in the form 82z + 24y, where x and
y are integers.

Solution

82=3-244+10 (1) 2=10-2-4 from (3)
24=2-10+4 (2) =10—2-(24—2-10) from (2)
10=2-4 +2 (3) =5-10—2-24 (simplifying)
4=2.2 —5(82—3-24) —2-24 from (1)
So d=2. So 2=5-82—-17-24, and z =5, y = —17.

The definition of relatively prime integers. Note that 6, 10 and 15 are
relatively prime, although no two of them are relatively prime.

Self-assessment questions

1.27

1.28

Use the Euclidean algorithm to find integers x and y such that
(544, 238) = 544z + 238y.

Find the following greatest common divisors.
(a) (87,24,45) (b) (30,42,70,135)

Problems for Sections 1.5-1.8

1F

1G

TH

11

J

Apostol, page 21, number 8.

Prove that if p is prime then ,/p is irrational.
[Hint: try to write pb?> = a?, and count the number of prime factors on each
side.]

Consider the set of positive even integers. An even integer is E-prime if it
cannot be written as a product of smaller even integers.

(a) List the E-primes up to 60, and write down an alternative description of
them.

(b) Prove that every even integer is E-prime or a product of E-primes.

(¢) Is factorization into E-primes unique?
Apostol, page 22, number 20.

Apostol, page 22, number 21, (a) and (b).




Chapter 2 Arithmetical functions and
Dirichlet multiplication

In this chapter we study functions defined on the set of positive inte-
gers. Some of these, such as the Mébius function p(n) and the Euler phi
function ¢(n), may already be familiar to you from previous courses.
After investigating their properties and deriving identities connecting
them, we show how such identities can sometimes be proved more sim-
ply by using the idea of ‘Dirichlet multiplication’. These identities are
particularly interesting when the functions are ‘multiplicative’ — that
is, f(mn) = f(m)f(n) whenever m and n are relatively prime. We
conclude with some results on ‘generalized convolutions’ which will be
needed in Chapters 3 and 7.

This chapter splits into FOUR study sessions.

Study Session 1: Sections 2.1-2.5 (pages 24-28)
Study Session 2: Sections 2.6-2.8 (pages 29-33)
Study Session 3: Sections 2.9-2.11 (pages 33-37)
Study Session 4: Sections 2.12-2.14 (pages 37-40)

Sections 2.15-2.19 are NOT part of the course.

Study Session 1: Sections 2.1-2.5 (pages 24-28)

Read Sections 2.1 and 2.2

Commentary

1. Although arithmetical functions can take real or complex values, our
attention in this chapter is entirely on real-valued functions. Complex
numbers will not appear until Chapter 6.

2. The definition of the Mébius function. Note that the Mobius function u(n)
takes a non-zero value only when n =1 or n is ‘squarefree’ (that is, a product
of distinct prime numbers); in particular, if p;, pa, ps are prime numbers,
then pu(p1) = —1, p(pip2) = +1 and p(p1p2ps) = —1.

3. The statement of Theorem 2.1. Note that % =1lifn=1and % < 1if
n > 1, so [%} =1 or 0 according as m = 1 or n > 1. The reason for
introducing the expression [%] will become apparent in Section 2.4.

4. The proof of Theorem 2.1. The key feature of this proof is the use of the

binomial expansion of (1 — 1)* in the last line. Recall that the binomial
coefficient

k k!
)= ———, i<k,
(z) k-0

represents the number of ways of selecting ¢ of the & primes.

Self-assessment questions

2.1  Write down the values of 1(31), u(32), ..., u(42).

11



2.2

2.3

24

Verify the statement of Theorem 2.1 when n = 27, 28, 29 and 30.
Write out the proof of Theorem 2.1 in the case n = 60.
(a) Prove that if f is any arithmetical function, then

S5 = 3 f(n/d).
d|n d|n

[Hint: if you have difficulty with this, write out both sides in the case
n =10.]

(b) Evaluate 3_;, p(n/d) when n > 1.

Read Section 2.3

Commentary

1.

The definition of the Euler ¢ function. An expression of the form Z 1

k
means that we add 1 for each relevant value of kK — that is, we count how

many ks there are. So to find ¢(n) we count those integers k such that k < n
and (k,n) = 1. For example, if n = 12, then k = 1,5,7 or 11, so ¢(12) = 4.

The proof of Theorem 2.2. The set A(d) is the set of integers k such that
k < n and (k,n) = d. For example, if n = 10, then A(1) = {1,3,7,9},

A(2) =1{2,4,6,8}, A(5) = {5} and A(10) = {10}. Note that each integer
from 1 to 10 occurs in exactly one of these sets. Letting f(d) be the number
of integers in A(d), we have f(1) = f(2) =4, f(5) = f(10) =1, and

> f(d) =10.

d[10

The proof of Theorem 2.2 (continued). If n =10, the one-to-one
correspondence referred to in the proof is

A1) «—{1,3,7,9}, A(2) «— {1,2,3,4}, A(5) «— {1}, A(10) «— {1}.

Note that, for example, A(2) corresponds to those integers ¢ satisfying
0<gqg< % and (q, 12—0) =1, and the number of such ¢ is ¢(5); so
f(2) = ¢(5) = 4. The last two lines of the proof follow from SAQ 2.4 above.

Self-assessment questions

25

2.6

2.7

2.8

2.9

10

Write down the values of (a) Z 1, (b) Z 1, (¢ Z 1.

q=1 p<20 k<12
p prime (k712):2

Write down the values of ¢(11), ¢(12), ..., ¢(20).

(a) Verify the statement of Theorem 2.2 when n = 18.
(b) What are the sets A(d) in this case?

(a) Show that if p is prime, then ¢(p) = p — 1, and ¢(p*) = p* — p®~ L.

(b) Use these results to prove Theorem 2.2 when n = p*.

Prove that ¢(n) = z”: L z”: Z w(d).
(n, k)

k=1 k=1 d|(n,k)



Read Sections 2.4 and 2.5

Commentary

1.

The proof of Theorem 2.3. The first part of the proof follows from SAQ 2.9

above. The second part, involving the rearrangement of a double summation,

uses a standard technique in number theory and you should read it several
times until you understand it — the main idea is to make the first of the
summations into a summation over the divisors d of n, and to adjust the
other sum accordingly.

The statement of Theorem 2.4. This is an important result which is very
useful for computation. For example, if n = 600 = 23 - 3 - 52, then

¢(n) =600-1- 2.1 =160.

The proof of Theorem 2.4. The main idea is to expand

(-5 0-5)-(5)

and to express the result in the form ) u(d)/d. By Theorem 2.3, this is
equal to ¢(n)/n.

The proof of Theorem 2.5(b). If you have difficulty following this proof,
consider first the case when (m,n) =1 (which is part (c)). In this case the
expressions in the denominators disappear.

The proof of Theorem 2.5(e). An alternative proof is to write
n= Qkprl“ ...p% and to rewrite Theorem 2.4 in the form

(n) = {2’”#{1‘1 e o= 1) (e — 1), ik 1
Pl pt i py — 1) .. (pr — 1), if k=0.

Each of the terms p; — 1 is even, and so contributes a factor of 2; the result
follows.

Self-assessment questions

2.10
2.11

2.12

Verify the statement of Theorem 2.3 when n = 18.
Use Theorem 2.4 to evaluate ¢(120) and ¢(210).

(a) Prove that ¢(3n) = 2¢(n) if n is not a multiple of 3.
(b) What is the corresponding result when n is a multiple of 3?

Problems for Sections 2.1-2.5

2A

2B

2C

Apostol, page 46, number 1.
Apostol, page 47, number 4.

Apostol, page 47, number 6.
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Study Session 2: Sections 2.6-2.8 (pages 29-33)

Read Section 2.6

Commentary

1. The aim of this section and Section 2.7 is to define a ‘multiplication’
operation on a set of arithmetical functions (those functions f for which
f(1) #0) in such a way that we obtain an abelian group. The associative and
commutative laws are proved in Theorem 2.6, the existence of an identity
element is proved in Theorem 2.7, and the existence of inverses is discussed
in Section 2.7.

2. The definition of Dirichlet product. If you have studied Laplace or Fourier
transforms, you may notice similarities between the definition of Dirichlet
product and that of a convolution in transform theory. The reason for the
name ‘Dirichlet product’ is that if we multiply together two Dirichlet series

(o) oo o0 h
Z LZL) and Z @7 we obtain another Dirichlet series Z ﬂ where
n=1 n n=1 n n

s )
= n=1
h(n) is as given in the definition of Dirichlet product.

3. The proof of Theorem 2.7. Tt is easier to omit the square-bracket term, and
argue as follows: since I(n/d) = 1 only when d = n, all but one of the terms
in the sum disappear, giving

S A@1(5) = f),  as required.
din

In the following questions, the arithmetical functions I and N are defined in the
text and u, oy and o7 are defined by:

u(n) =1, for all n;
oo(n) = the number of divisors of n — for example, 0o (6) = 4;

o1(n) = the sum of the divisors of n — for example, o1(6) = 12.

Self-assessment questions

2.13 Prove the following.
(a) Txu=u (b) pxu=1I () uxu=o09 (d) N*xu=o;

2.14 By considering f * u, prove that Zf(d) = Zf(n/d) (see SAQ 2.4).

d|n d|n

o1(n)

1
2.15 Prove that Z =

d|n

2.16 By considering u * u * N and u * N x N, prove the following.

(@) Y oid)=n) oo(d)/d (b)Y doo(d)=n)_ oi(d)/d
d|n dn d|n

d|n

If you are unfamiliar with group
theory, do not worry at this
stage; we shall study abelian
groups in Chapter 6.

We study Dirichlet series in
Chapter 11.

In M381, oo(n) and o1(n) are
called 7(n) and o(n),
respectively.



Read Section 2.7

Commentary

1.

Note that f~! is the inverse of f with respect to *, and not the usual inverse
function.

The statement of Theorem 2.8. This theorem shows you how to find the
inverse of any arithmetical function f for which f(1) # 0. The basic idea is
that f~1(n) can be expressed as a sum of terms involving the divisors d of n,
other than n itself. For example, if p is prime, then

1
= —Wf(l))’

and if p and ¢ are distinct primes, then
174 00) =~ LS00 (0 + £ 1) + ) (@)}

1

= 7y W@ = F W)}

These formulas simplify considerably when (as is usually the case) f(1) = 1.

The proof of Theorem 2.8. The main step in the proof is to consider the
equation (f * f~1)(n) = I(n), and to solve it for f=*(n).

The Mobius inversion formula. This important result states simply that
f=g=uif and only if g = f % u. Note that the equation for g can also be

written in the form g(n) = Z wu(d) f (%)
d|n

Self-assessment questions

2.17

2.18

2.19

2.20

If p and ¢ are distinct primes, find ¢~ (1), ¢ (p), ¢ *(p?) and ¢~ (pq).

If p is a prime and f is an arithmetical function with f(1) = 1, find
f7H(p?) and f71(pP).

Prove that if f(1) # 0 and g(1) #0, then (f xg)~! = f~tx g~ L.

Use SAQ 2.13 to prove that, for all n,
n n
(a) }dl oo(du(Z) =1 () }dl (@) =n.

Read Section 2.8

Commentary

1.

The definition of A(n). Note that A(n) = 0 unless n is a prime power, so The function A(n) will be of
that the function A ‘picks out’ prime powers, and that all logarithms are great importance in Chapters 4
taken to base e (sometimes written In). and 13.
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2. The proof of Theorem 2.10. The main idea of this proof is to interpret
Z A(d) as a sum involving log py for the primes pj dividing n.
d|n

3.  The proof of Theorem 2.11. Here we use the alternative version of the
Mobius inversion formula (see Commentary 4 for Section 2.7). The reason is

that we can then write log(n/d) as logn — log d, thereby splitting the sum
into two parts, the first of which vanishes.

Self-assessment questions
2.21 Write down the values of A(21), A(22), ..., A(30).

2.22 Verify the statements of Theorems 2.10 and 2.11 when n = 18.

Problems for Sections 2.6-2.8
2D Apostol, page 48, number 17(a).

2E Apostol, page 47, number 13. [Hint: take logs.]

Study Session 3: Sections 2.9-2.11 (pages 33-37)

Read Section 2.9

Commentary

1.  Ezample 5. To see that fg is multiplicative if f and g are, note that if
(m,n) =1, then

(f9)(mn) = f(mn)g(mn) = f(m)f(n) - g(m)g(n)

= f(m)g(m) - f(n)g(n)

= (fg)(m) - (fg)(n).

Similar proofs hold for f/g and for the corresponding results for completely
multiplicative functions.

2. The statement of Theorem 2.13. These results are very useful in practice:
in proving results about multiplicative functions f(n), it is often sufficient to
restrict our attention to the case when n = p¥, a prime power, and then use
multiplicativity for the general result; similarly, for completely multiplicative
functions, we need consider only the values f(p), where p is a prime.

Self-assessment questions

2.23 Let f(n) =1 if nis a perfect square, and 0 otherwise.
Prove that f is multiplicative. Is f completely multiplicative?

2,24 Let g(1) =1, and g(n) = 2", where n = pi* ...por.
Is g multiplicative? Is g completely multiplicative?

2.25 Prove Theorem 2.13.



Read Sections2.10 and 2.11

Commentary

1.

The statement of Theorem 2.14. This result is extremely useful in practice.
For example, knowing that u and N are multiplicative, we can deduce that
u*xu = og and N *u = g1 are both multiplicative. Note, however, that
although u and N are both completely multiplicative, neither oy nor oy has
this property:

00(2-2) =3, but 09(2) - 00(2) =4; 01(2-2) =7, but 01(2) - 01(2) = 9.

The proof of Theorem 2.14. Note how the divisors ¢ of mn split into
relatively prime divisors a and b of m and n, respectively. This enables each
of the terms f(ab) and g(mn/ab) to be split into two parts.

The proof of Theorem 2.15. This is a proof by contradiction in which we let
mn be the smallest number for which f(mn) # f(m)f(n) with (m,n) = 1.
To derive the contradiction, we argue as in Theorem 2.14, using the fact that
ab < mn to split the terms f(ab) and g(mn/ab) into two parts each.

The statement of Theorem 2.17. We saw earlier that finding the inverse of
an arithmetical function can be somewhat tedious. However, if f is a
completely multiplicative function, then f~!(n) takes on a particularly
simple form — namely, f~(n) = u(n)f(n).

The proof of Theorem 2.17. In line 2 of the proof we replace f(d)f(n/d) by
f(n), since f is completely multiplicative. In line 7 we have rewritten the
equation

n

Zf_l(d)f(g) =0 (line 6 of page 31).
d|n
All but two terms of this equation vanish, since p(p*) = 0 if k > 2.

The proof of Theorem 2.18. To show that g(n) = Zu(d)f(d) is
d|

multiplicative, we observe that g = (uf) * u.

Self-assessment questions

2.26 Use the fact that 4 and N are multiplicative to prove that ¢ is

2.27

multiplicative.

Use Theorem 2.18 to evaluate the following expressions, when
aq A,
n=py...pi:

@) S pdoo(d) 0) S udord (© S p@/d @) S dud)
dln d|n

d|n d|n

Problems for Sections 2.9-2.11

2F

2G

Apostol, page 49, number 26.

Apostol, page 49, number 27.
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Study Session 4: Sections 2.12-2.14 (pages 37-40)

Read Sections 2.12 and 2.13

Commentary

1. The proof of Theorem 2.19. 1In the last line, the equation
A1 (n) = u(n)X(n) follows from Theorem 2.17 since X is completely
multiplicative. The equation p(n)\(n) = u?(n) follows since both sides are 0
if n is not squarefree, and A(n) = p(n) if n is a product of distinct primes.
Finally, the equation p?(n) = |u(n)| follows from the definition of .

2. The definition of o,(n). You have already met the divisor functions og(n)
and o1(n) in the SAQs.

Self-assessment questions
2.28 Write down the values of A(n), og(n) and o1(n) for n = 11,12,..., 20.

2.29 Prove that og(n) is odd if and only if n is a perfect square.

2.30 By considering u * u * N2, prove that Z o3(d) = n? Z oo(d)/d>.
d|n d|n

Read Section 2.14

Commentary

I. In Chapter 3 we are concerned with sums of the form Z a(n), where « is an
n<x
arithmetical function, and we shall need to refer to Theorem 2.21. The
generalized Mobius inversion formula (Theorem 2.23) is needed in Chapter 7.

2.  The equation (wo F)(m) = (ax F)(m). If F(z) =0 whenever z is not an
integer, then F(m/n) can be non-zero only when m is an integer and n|m.
Thus

(o F)(m) =Y a(m)F(m/n) = a(n)F(m/n) = (axF)(m).

n<m nlm

3.  Proof of Theorem 2.21. This proof is another illustration of how to
rearrange a double summation. By putting k = mn, we replace mn < x by
k < x and n|k.

Self-assessment questions

2.31 Use Theorem 2.21 to evaluate Z w(n) Z [x/mn].

n<z m<z/n



2.32 Use Theorem 2.23 to prove that if > 1, then Z u(n)[xz/n] = 1.

n<T

[Hint: take F'(z) =1 for x > 1]

2.33 Verify the statement of Theorem 2.23 when z = 1 and = = 2.

Problems for Sections 2.12-2.14
2H Apostol, page 48, number 18. (Recall that n is perfect if oq(n) = 2n.)

2l  Apostol, page 48, number 19.
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Chapter 3 Averages of arithmetical
functions

As we have seen, some arithmetical functions f(n) fluctuate wildly as n
increases — for example, Mangoldt’s function A(n) is 0 when z = 100
or 102, but log 101 when n = 101. One method for ‘smoothing out’
such fluctuations is to average the values of f(n), and this leads to the
study of 3 f(n), where the summation is taken over all integers n up to
a given number x; by this means we can determine how ‘big’ a function
is, on the average. In this chapter we investigate this problem when
f(n) =d(n), o4(n), ¢(n), u(n) and A(n). The two principal techniques
that we use are Euler’s summation formula and the counting of lattice
points in a hyperbolic region.

This chapter splits into THREE study sessions.

Study Session 1: Sections 3.1-3.4 (pages 52-57)
Study Session 2: Sections 3.5-3.7 (pages 57-62)
Study Session 3: Sections 3.9-3.12 (pages 64-70)

Section 3.8 is NOT part of the course.

Study Session 1: Sections 3.1-3.4 (pages 52-57)

Read Sections 3.1 and 3.2

Commentary

I.  From now on we shall use d(n), rather than oy(n), to denote the number of
divisors of n. In Chapter 2 we used og so as to avoid expressions like

2 dn A(d)d(n/d).

2. Most of this chapter is concerned with approximate expressions for Z fn),
n<
where f(n) =d(n), ¢(n), u(n) and A(n). The method used may seem
difficult and technical at first, but will become quite straightforward and
routine once you have had practice in using it.

3. Equations (2) and (3). Equation (2) is the main result of Study Session 2,
and says that Z d(k) is ‘about’ x log xz — or, more accurately, ‘about’
k<Lz
xlogx + (2C — 1)x; the error in this approximation is not more than K/z,
for some constant K. The proof that the right-hand side of Equation (3)
converges is a standard application of the integral test, and may be found in
any Analysis book; the value of C' is about 0.57.
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4.

The definition of ‘big oh’. This definition is extremely useful when we want
to approximate a function f by a simpler positive function g. For example,
22+ 3z +2 = O(23) for z > 1, since |22 + 3z + 2| < 102% when z > 1.

(We could have chosen other constants M instead of 10.) Usually we are not
concerned with the value of a, and simply write ‘f(x) = O(g(z))’ to mean
4f(x)] £ Mg(z) when © > a, for some value of a’: for example,

22 + 37 + 2 = O(2?).

Note that sinz = O(1) since |sinz| < 1, and (more generally) f(z) = O(1)
whenever f is bounded. Note also that Equation (2) implies that

Z d(k) = zlogz + O(x),

k<Lz
although this is less informative than Equation (2).

Note also that O(f(n)) makes sense only for positive functions f(n);
otherwise, we have to write O(|f(n)]).

Combining ‘big oh’ terms. Some ‘big oh’ terms are smaller than others, and
can be omitted. For example, we can replace f(x) + O(z) + O(z?)

by f(z) + O(x3), since the O(z) term is ‘swallowed up’ by the O(x?) term.
You will soon get used to combining ‘big oh’ terms in this way.

The definition of f(x) ~ g(x). To say that f(z) ~ g(x) means that the
‘relative error’; rather than the ‘absolute error’, tends to 0 as x — co. An
example of this asymptotic behaviour was given in the Introduction of the
book (page 9) where we stated the prime number theorem in the form

m(x)logx

lim =1.
T—00 x

x
This is often written in the form m(x) ~ [ and implies that if = is large
ogx

then 7(x) is approximately equal to, or ‘behaves like’, x/log .

Self-assessment questions

3.1

3.2

33

Which of the following statements are true?

(a) 222 = O(23) (b) 22% = O(2?) (c) 3sin(2z2?) = O(z?)
(d) 3sin(2z?) = O(1) (e) 5lz] = O(x) (f) 5z = O([z])
(g) 2+0(z*)=0(=*)  (h) 2°+0(z) =O0(2)

Prove that if g(x) > 0 for all z, and f(x) = O(g(z)), then

/amf(t)dtO(/;g(t)dt).

Prove that if f(z) ~ g(z) and g(z) ~ h(x), then f(x) ~ h(x).

Read Section 3.3

Commentary

1.

The statement of Theorem 8.1. 'This is the main tool to be used in this

chapter. Basically, the idea is to replace the sum Z f(n) by the integral
y<n<x

x
/ f(t) dt, and then calculate the error in doing so. (The last three terms
y

will generally be small compared with the first term.)
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A special case of Theorem 3.1. A useful form of Euler’s summation formula,
which will be needed in Section 3.4, is as follows.

/’f ﬁ+/(%{Df®ﬁ+fﬂ%%x—Mﬁ@)

1<n<x

It is obtained from Theorem 3.1 by letting y — 1 from below; it is NOT
obtained by substituting y = 1. Alternatively, we can write

Yoo fm=rf+ > fn)

1<n<Lx 1<n<z

and substitute y = 1 in Theorem 3.1.

The proof of Theorem 3.1. The proof given, although straightforward, is a
little confusing to follow. Here is an alternative proof, given for the special
case of Commentary 2 above.

We let N = [z], and consider the term

Aanﬁmw:thmmeMf@w

Integrating by parts, we have

[ rwa=son - [ 10 a =@ -0~ [ o

Also,

(Kme%ﬂdtz(A2f%ﬂdt+2/3f%ﬂdt+_”

+(N-1) f ﬁ+N/f
)+

{f(2) - f(l)}+2{f() f2
+ (N =D{f(N) = F(N =D} + N{f(z) - f(N)}

— ()= fQ) = J(V 1) — F(N) + N ().
So
/wufmn%wa:xf /'f ) dt
1
+f()+f -+ f(N) = Nf(x)

/f tdt — F(1) + (z — [2]) ().

1<n<x

Rearranging this equation gives the required result.

Self-assessment questions

34

3.5

Verify the statement of Euler’s summation formula in Commentary 2,
when f(x) =1 and f(z) =

Write out the above form of Euler’s summation formula in the following
cases.

(2) fla)=1/a
(b) fla) = 1/a* (s> 0,5 £ 1)

(¢) flx)=2a (a = 0) These results will be needed in
Section 3.4.

Read Section 3.4
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Commentary

1. The Riemann zeta function. We shall study the Riemann zeta function ((s)
in detail in Chapters 11 and 12. For the time being, note that (1) is
2

1 1
undefined (since Z — diverges) and ((2) = Z —, which equals %
n n

2. The proof of Theorem 3.2(a). The first step after using Euler’s summation
formula is to notice that  — [x] < 1, and hence (x — [z])/z = O(1/z).
The second step is to write

/ (t — [t])/t3dt = / (t — [t])/t3dt — / (t — [t])/t%dt.
1 1 T
The first integral on the right is a constant, and the second integral is

0(/:0 1/t2dt> = 0(1/z).

1 o
S0 3"~ =logz + A+ O(1/x), where A =1 —/ (t — [1)/¢dt,
n<e 1

and the last part of the proof shows that A = C, using Equation (3).

3. The proof of Theorem 3.2(b). This proof is very similar to that of part (a).

In the second line the integral / (t — [t])/t*T dt has been replaced by
1

/ " (b= [)/£ e + O(*), since

/;C(t )/t = o(/:o 1/ts+1dt> — O(a—).

4. The proof of Theorem 3.2(d). The last line follows since

oz/m t* ldt =2 —1=0(z%) and 1/(a+1)=0(1) = O(z").

Self-assessment questions

3.6  Use Theorem 3.2 to write down asymptotic formulas for the following.

@ Y.n (b) Y n’ () Y n

n< n<x n<r
@ Sn? @ Sa2 o Son?
n<x n<e n>x

3.7 Compare the values of Z n? and Z n~2 with the approximations
nr ne

obtained in SAQ 3.6 parts (b) and (d), when z = 10.

Problems for Sections 3.1-3.4
3A Apostol, page 70, number 1(a).

3B  Apostol, page 70, number 1(b).
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Study Session 2: Sections 3.5-3.7 (pages 57-62)

Read Section 3.5

Commentary

1. The proof of Theorem 8.3. This proof is in two parts. The first part proves
the weaker result Y d(n) ~ xlogz and the second part refines the method to
prove the result in full.

The method used is a standard one which recurs later in the chapter.
Basically, the idea is to replace the sum Z d(n) by a sum Y 1, summed over

n<x
all ¢ and d such that gd < x. To determine this sum, we count the number of
‘integer points’ on the hyperbolas ¢d =1, ¢gd =2, ..., qd = [z], and this is

done by fixing d and letting ¢ range from 1 to z/d.

2. The equation Z 1==2/d+ O(1). It is not necessary to use
q<z/d
Theorem 3.2(d) to prove this, since the left-hand side is [x/d] which differs
from x/d by less than 1. In the following lines of mathematics, note the way
we write Z O(1) = O(z) and zO(1/z) + O(z) = O(1) + O(z) = O(x), to
d<z
deal with the ‘big oh’ terms.

3. Figure 3.2. On the horizontal line with height d there are [z/d] lattice
points, d of which do not lie in the shaded region; so there are [z/d] — d
lattice points on the line segment shown. The number of lattice points on the
bisecting diagonal line is [/z ]: these points are (1,1), (2, 2),

s (Ve [V ).
4. At the end of the proof, notice again how we deal with the ‘big oh’ terms:

2> 0(1)=0(Vz) and 220(1/vz)=O0(/z).
A<z

Self-assessment question

3.8  Without looking at the book or the above commentary, write down
in words the method of proof of Theorem 3.3.

Read Section 3.6

Commentary

1. The proof of Theorem 8.4. The method of proof is exactly the same as
before, with the results of Section 3.4 again giving the required estimates.
Notice how the first term —z/2 in the last line is absorbed into the O(x log x)
term.
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2. The proof of Theorem 3.5. Again, the method of proof is the same as for
the weak version of Theorem 3.3. To obtain the last line, notice that

ZL.ochl o a+1 - xlfa
L~ 0 E 0l = 0, 0(s ) = o),
O(z%¢(a)) = O(z*), O(z*O(z~%)) = O(1), and the O(1) term is absorbed
into the other ‘big oh’ terms.

3. The proof of Theorem 8.6. Again, this is much as before, using parts (a)
and (d) of Theorem 3.2 to provide the required estimates. Notice how the
terms 2178 /(=) + O(z~#) are replaced by O(x!~") in the last line.

Self-assessment question

3.9  Use Theorems 3.4-3.6 to write down asymptotic formulas for the following.

(a) Y oa(n) (b)Y oua(n)

(©) D oa(n)  (d) Y o-1s2(n)

Read Section 3.7

Commentary

- 1
1. The result Z M(Z) = @ = % will be proved in Chapter 11.
n 7r

n=1

2. The proof of Theorem 3.7. This proof starts with the expression for ¢(n)
proved in Theorem 2.3, and proceeds just as in the previous two sections.

3. The ‘big oh’ terms. Notice how the term Z u(d)O(%) is replaced by

d<z

1 1
O(ac Z 7>, since |u(d)| < 1 for all d. In the last line, the term %x20<),
d<z d r
which is O(z), is ‘swallowed up’ by the O(xlogx) term.

Self-assessment question

3.10 Compare the value of Z #(n) with the approximation 3z%/72, when

nx

x = 10.

Problems for Sections 3.5-3.7
3C Write out the proof of Theorem 3.5 in the case o = 2.
3D Apostol, page 70, number 2.

3E Apostol, page 71, number 6.
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Study Session 3: Sections 3.9-3.12 (pages 64-70)

Read Sections 3.9,3.10 and 3.12

Commentary

I. In this reading section we prove a result on the partial sums of a Dirichlet
product in Section 3.10, and generalize it in Section 3.12. The proof of
Theorem 3.10 uses the associative law (Theorem 2.21) in the form
folgoU)=(frg)oU=hol = H.

2.  The statement of Theorem 3.17. Putting a = 1 gives b = z, and so the
right-hand side of (24) reduces to

FOGE) + Y gm)F (T) = FOGE) - Y gm)F (%),

since F'(1) = f(1). Similarly, putting b = 1 gives a = z, and the right-hand
x

ide reduces t a().

side reduces to Zf(n) -

nx

Thus Theorem 3.17 is a generalization of Theorem 3.10.

3. The proof of Theorem 3.17. To see that the expression for H(x) is the same
as (24), we write

H(x) =Y f(n) Y gl@)+Y gn) > fld)=) f(d)) ga)

n<a g<z/n n<b d<z/n d<a q<hb
x x
= fnG(f>—|— gnF<7)—FaGb, as required.
,?@() . néb() . (a)G(b)

Self-assessment questions
3.11  Use the method of proof of Theorem 3.17 to prove Theorem 3.10.

3.12  Verify Theorem 3.17 when z = 4 in the cases
(a) a=1,b=4 (b) a=b=2.

Read Section 3.11

Commentary

1. The proof of Theorem 3.12. Recall that Z,u(d) = [1/n] (Theorem 2.1) and

d|n
ZA(d) = logn (Theorem 2.10). Note also that
d|n
Z logn =logl+log2+ - +log[z] =log(l-2-...-[z]) = log([x]!).
nx
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Sel
3.13
3.14

3.15

3.16

Line 3 of page 67. Note that we have split the term {z} away from the
remaining terms. The inequality follows since

Z {z/n} < Z 1=[z] -1

2<n<x 2<n<x

The statement of Theorem 3.14. This theorem tells us the highest power of
p that divides [z]!. For example, if = 100 and p = 3, then the highest power
of 3 that divides 100! is 3*®) where

a(3) = [1°] + [290] + [22] + [2] =33+ 11+3+1=148.

m],[wo

243 ﬁg],...) are zero.

Note that this is a finite sum: all succeeding terms ([

The proof of Theorem 3.16. 1In this proof we first replace the summation

over n by a summation over prime powers p”*, all other terms being zero.

We then split off the main term, corresponding to the sum over primes p

(that is, m = 1), and show that the remaining terms (with m > 2) are O(z).
o0

This involves summing the geometric series Z p~ ™ and replacing the
m=2

resulting sum over p by the corresponding (larger) sum over n. Since this

latter sum converges (and is therefore O(1)), the result follows.

f-assessment questions
Verify the statements of Theorem 3.12 and 3.13 when = = 41.
Find the highest power of 7 dividing 500!.

By calculating a(2), «(3), a(5) and «(7), factorize 10!.

Verify that Z A(n) [%} = Z

n<e

oo

[fn] log p, when =z = 10%.
1 LP

m=

Problems for Sections 3.9-3.12

3F

3G

Apostol, page 70, number 4. [Hint: [z/n] = z/n+ O(1).]

Apostol, page 70, number 5.
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Solutions to the Self-assessment questions

Historical introduction and Chapter 1
1.1 101, 103, 107, 109, 113, 127, 131, 137, 139, 149.

1.2  On summing the appropriate arithmetic progressions, we have:
(a) 1+243+-+n=1in(n+1)
(b) 14447+ +(3Bn—2)=3nB3n-1).

13 () () 2+ {1n* =D} =L {an®+ @' — 2>+ 1)}
— It 22+ 1) = (> + 1)}
(i) (4n)?® + (4n® —1)* = 16n> + (16n* — 8n? +1)
=16n* +8n% + 1 = (4n? +1)%

(i) {t(a® — b2)}2 + (2tab)? = t* {(a* — 22V + b*) + 4a®b*}
— ?(a* 4 20%6% + b*) = {t(a® +1*)}°.
(b)t=1,a=6,b=1andt=3,a=2,b=1.

1.4 (a) 2! —1is not prime: 2047 = 23 - 89.
(b) The proper divisors of 2°~! P, where P = 2P — 1 is prime, are
1,2,22,...,2p= 1 and P,2P,2?P,...,2P~2P. Their sum is
(1424224 420"+ P(L+2+---+2°7?)
= (2P — 1)+ PPt —1)=2r71(27 — 1),

1.5  There are several possible answers — for example:
(a) 30=15+15;35=1+4+6+28; 40 =1 + 3 + 36;
(b) 30=1+4+25;35=1+9+25; 40 = 4 + 36;
(¢) 30 =1+5+ 12+ 12; 35 is pentagonal; 40 = 5 + 35.

1.6 53 =72+2261=06%+052% 73=82+32

1.7 (a) (n+1)!'+ 2 is divisible by 2, (n + 1)! + 3 is divisible by 3, ...,
(n+ 1)+ (n+ 1) is divisible by n + 1. So the given n numbers are all
composite.

(b) 101! +2, 101! + 3, ..., 101! + 101.

1.8  Since 22 + ax + b is a prime number when z =0 and z =1, band 1 +a + b
are prime. But then, when x = b, 22 + ax + b = b(1 + a + b), which is
composite.

1.9  If a and b are both divisible by the prime p, then so is every number of the
form ax + b, for x = 1,2, ..., and hence there can be no prime numbers of
this form.

1.10 (a) If 2 = [z] + 0, where 0 < 0 < 1, then z +n = [z] + n + 0, and so
[ +n] = [z] +n.
(b) Let x = [z] + 0. If 0 < 0 < 3, then 2z = 2[z] + 20 gives [2z] = 2[z];
if 1 <0 <1, then 2z = 2[z] + 20 gives [22] = 2[z] + 1.

1.11  (a) w(50) =15, x/logx = 12.781, so w(z) + =/ logx = 1.174.
(b) m(150) = 35, x/logx = 29.936, so 7(z) + x/logx = 1.169.
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1.12

1.13

1.14

1.15

1.16

1.17

1.18

(a) 30=23+7,32=20+3,34=29+5,36=29+7,38=31+7,
40 = 37 + 3.

(b) 30=37—7,32=37—5,34=37—3,36 =43 — 7, 38 = 43 — 5,
40 = 43 — 3.

¢) 3,5 5,7 11,13; 17,19; 29, 31.

d) 2, 5, 17, 37, 101.

) 3,11, 83.

) 37,53, 67, 83, 101.

g) 37, 53, 67, 83, 101.

2n)!
The result is clearly true when n = 1. So assume that ( 'n )| > 2™, Then
nln!

2n+1) @n4+2@n+1) 2n) _2@n+1) .
m+Dlin+1)! (m+1)n+1) nhl > 1 Son > gt

The result follows by induction.

If the principle of induction is false, then there exist some positive integers
that do not belong to @). Let A be the set of such integers. By the
well-ordering principle, A contains a smallest number — call it n + 1.

(By (a), it cannot be 1.) Then n € Q). This contradiction establishes the
result.

(¢) If djn and d|m, then n = rd, m = sd for some integers r and s.
So an + bm = ard + bsd = (ar 4 bs)d, so d|(an + bm).
(e) If adlan, then an = r - ad for some integer 7.
Dividing by a (# 0) gives n = rd, so d|n.
() If dln and n|d, then n = rd, d = sn for some integers r and s.
So n =r-sn, giving rs = 1. This is possible only if r = +1 and s = r,
so |d| = |n|.
(k) If d|n, then n = rd for some integer r.
So r = n/d and r|n, and hence (n/d)|n.

(a) d=5;5=(0x25)+ (1 x5)

(b) d=16;6=((—1) x 30) + ((—2) x (—18)).
() d=1;1=((—11) x 9) + (4 x 25).

(d) d=3:3=(8x (—21)) + ((=3) x (—57)).

Let d = (a, (b, ¢)). Then d|a and d|(b,c), so d|a and d|b and d|c.

So d|(a,b) and d|c, and hence d|((a, b), ¢).

A similar argument proves that ((a,b), c)|(a, (b,c)), and so

(a’v (b7 C)) = ((av b)a C)'

When a =42, b = 70 and ¢ = 30, the left-hand side is (42,10) = 2 and the
right-hand side is (14, 30) = 2.

If (a,b) = d, then d|a, d|b and d = ax + by for some integers x and y.
So 1= (a/d)x + (b/d)y. Tt follows that (a/d,b/d) =1, since if ¢ were a
common factor of a/d and b/d, then ¢ would also be a factor of

(a/d)x + (b/d)y = 1, by Theorem 1.1(c).
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1.19 (a) If n is composite, then it has at least two prime divisors (not
necessarily different). If each prime divisor of n exceeds y/n, then their
product exceeds n, which is a contradiction.

(b) Omitting the multiples of 2, 3 and 5 leaves the list
151,157,161, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199.

The only multiples of 7, 11 and 13 in this list are 161, 187 and 169,
respectively, and we need go no further since 13 is the largest prime
< v/200. Removing these three numbers leaves the primes

151,157,163,167,173,179, 181,191, 193,197, 199.

1.20 Clearly no p;|N since each p; divides all but one of the terms in the sum —
for example, p; does not divide ps...p,. So N is prime or a product of
primes, which is impossible if py,...,p, are the only primes.

1.21 n*+4=(n?—2n+2)(n® + 2n + 2), and both terms are > 1 if n > 1.
1.22 (a) 23.53 (b) 2-3-5-7-11 (c) 22.3.73 (d) 37

1.23 (a) 1=20.30.5% 2=21.30.50; 3=20.31.50. 4=22.30.50;
5=20.3%.55 6=21.31.5% 10=2'-3%.5%; 12=22.3.50;
15=20.3t.5% 20=22.3%.5% 30=2!.3'.5% 60=2%2.3.5¢

(b) There are a1 + 1 possibilities for the power of p1, az + 1 possibilities
for the power of ps, ..., a, + 1 possibilities for the power of p,.. The
total number of possibilities is therefore (a1 + 1)(ag + 1) ... (a, + 1),
and each corresponds to just one positive divisor of n.

(¢) For the numbers in SAQ 1.22,

(a)4-4=16, (b)2-2-2-2:-2=32, (¢)3-2-4=24, (d)8.

1.24 (a) (i) 2 279119 =10; (i) 24 - 3150 71110 = 42;

(iii) 20 30 50—1

(b) (i) 22-31-53.71. 111 =231000; (ii) 22-3!-51- 73 - 111 = 226 380;

(iii) 23 - 37 - 5% = 2187 000.

1.25 (a) p3 =5 (since % + % + % > 1). (b) p1o = 29.

1.26 If there were only finitely many primes, then Y p~! would be a finite sum,

and hence convergent. This contradicts Theorem 1.13.

1.27 544 =12-238 + 68 34 =238—-3-68
238=3-68 +34 =238 — 3 (544 — 2-238)
68 =2-34 =7-238—-3-544
So d=34. So z=-3, y="T.

128 (a) 3 (b) 1

Chapter 2

2.1 n |31 32 33 34 35 36 37 38 39 40 41 42
pm)|-1 0 1 1 1 0 -1 1 1 0 -1 -1

2.2 Zd|27 p(d) = p

D4+ p)+p9)+p27)=1+(-1)+0+0=0;

1) + p(2) + p(4) + p(7) + p(14) 4 p(28)
~1)+0+(-1)+1+0=0;

Zd|29ﬂ(d)zﬂl)+ﬂ(29):1+ 1) = 0;

( (—
(1) + p(2) + p(3) + p(5) + p(6) + 1£(10) + p(15) + 1(30)
+(-D+ D)+ (D) +1+14+1+(-1)=0.

64



23

24

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

60 =22 .35, so we can ignore u(d) whenever d is divisible by 22; so
>0 1(d) = (1) + {n(2) + p(3) + p(5)} + {w(2-3) + u(2-5) + pu(3-5)} +pu(2-3-5)

:(1 +-)3 <f>(—1) + (3)(—1V + (-1
=(1-1)=0.

(a) If n = 10, the left-hand side is f(1) + f(2) + f(5) + f(10), and the
right-hand side is f(10) + f(5) + f(2) + f(1), which is the same.
In general, as d runs through all the divisors of n, so does n/d, and so
each term f(d) on the left-hand side occurs exactly once on the
right-hand side, and vice versa.

(b) By part (a) and Theorem 2.1,

Z,u(n/d) = Z,u(d) =0, sincen > 1.
d|n d|n

n |11 12 13 14 15 16 17 18 19 20
¢n)[10 4 12 6 8 8 16 6 18 8

(a) Y418 8(d) = ¢(1) + &(2) + B(3) + ¢(6) + ¢(9) + H(18)
=1+142+2+6+6=18.
(b) A(1) ={1,5,7,11,13,17}, A(2) = {2,4,8,10, 14,16},
A(3) = {3,15}, A(6)={6,12}, A(9)={9}, A(18) = {18}.

(a) If 1 < a < p, then (a,p) = 1 except when a = p; thus ¢(p) =p — 1.
If 1 < a < p®, then (a,p®) =1 except when a is a multiple of p, and
there are pa’l such multiples; thus ¢(p®) = p* — p*~ 1.

b) D é(d) = ¢(1) + 6(p) + $(p°) + -+ + ¢ (p*)
i =1+(p—1)+(p —p) -t

e

(pa _pa—l) = p°.

n

[(nlk)] =1 only when (n, k) = 1, so ; [(n’lk)] => "1=¢(n).

k=1
But {1} = Z wu(d), by Theorem 2.1, so ¢(n Z Z w(d

(n, k) di(m,k) k=1d|(n,k)
> nld) *—18u 1) +9p1(2) + 641(3) + 341(6) + 241(9) + 1(18)
d|18

=18-9—-6+3+0+0=06=g(18).

120 = 2% 3.5, 50 ¢(120) = 120 - 1 . 2. 4 — 3,

210=2-3-5-7,50 $(210) =210-%-2.2.5 =48

(a) If n is not a multiple of 3, then (by Theorem 2.5(c))

¢(3n) = ¢(3)d(n) = 2¢(n).

(b) If n is a multiple of 3, then n = 3¥m, where 3 { m. Then
(by Theorem 2.5(c))

$(3n) = (3" 1)g(m) = 2 3%¢(m) = 3(2- 3" 1o(m)) = 36(n).
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2.13 (a) This follows from Theorem 2.7.

(b) (u*u) Z w(d ), by Theorem 2.1.
d|n
() (ux*u) Zl—ao

(d) (N *u)( Zd—al

d|n

214 3" f(d) = (fru)(m) = (wx H)m) = > (%)

d|n d|n
218 01(n) = (Ve u)(n) = (us N)(m) = 3. 2 =n Y é
d|n d|n

2.16 Zol (o1 *xu)(n) = (N *xu)*xu)(n) = ((uxu) *x N)(n)

" (o0 # N)(n) = Y o0(d)- & = 0" oo(d)/d
d|n d|n
Zdao ((N * N) *u)(n) (Since (N*N)(n)zzwgznao(n))
T =@ .
= Zal(d - = nZol
d|n d|n

2.17 Since ¢(1) =1, ¢(p) =p—1, ¢(q) = ¢ — 1, ¢(pq) = (p — 1)(¢ — 1), and
¢(p®) = p* — p, we have

¢~ (1) =
¢ (p) = ﬂé(p)aﬁ’l(l) =1-p,
¢ (p%) = —{s(p*)e (1) + ¢(p)o ' (p)}
={@*-p+@-D(1-p}=1-p
and
¢~ (pg) = 20(p)$(q) — d(1)d(pg) = (p — 1)(g — 1),

by the formula in Commentary 2.

218 f~'(1)=1and f~(p) = —f(p). So
+f ) )} = ) - £,
= + LW )+ F ) f (0%}
=—f®)® +2f () f(*) - F(P°).
219 (fxg)x(fThxg ) == f ) x(grg) =T so(fxg)~ = flxg™
2.20 By SAQ 2.13 parts (c) and (d), u*u =09 and N *xu = g1. So
(a) u=o0g* u — that is, Zao(d)u (g) =1;

d|n
(b) N =0y * u — that is, Zal(d)u (E> =n.

d|n

221 o |21 22 23 24 25 26 27 28 29 30
An)| 0 0 log23 0 logh 0 log3 0 log29 0
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2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

ZA(d) =A(1) + A(2) + A(3) + A(6) + A(9) + A(18)
418 =0+1log2+1log3 + 0+ log3 + 0 =log18.
= u(d)logd = — p(1)log1 — u(2)log2 — u(3)log 3 — 1(6) log 6
d|18 — 1(9)log9 — u(18)log 18
=0+log2+log3 —1logb6+0+0=0=A(18).

f(mn) =1 if mn is a perfect square, and 0 otherwise. If (m,n) = 1, this
means that f(mn) =1 if m and n are perfect squares, and 0 otherwise.

So f(mn) = f(m)f(n) if (m,n) =1, and hence f is multiplicative.

But f is not completely multiplicative, since f(4) =1 but f(2)f(2) = 0.

If m=pi*...por, n=qg"...q" and (m,n) = 1, then
g(m,n) =275 =27 .25 = g(m)g(n), so g is multiplicative.
But g is not completely multiplicative, since g(4) = 2 but g(2)g(2) = 4.

(a) If f is multiplicative, then

fi'ps? . .pyr) = f(pi") f(py? .. ppr)
=...=f)f®s?) ... f(PE).

Conversely, if m =p}*...p, n= qll’1 ...q% and (m,n) = 1, then

flmn) =TLF i) TLf(g") = f(m)f(n).
(b) If f is completely multiplicative, then

fo®) =fle-p* ) =Ff)f0* ") =...= f(p)*

Conversely, if m = pi*...p%, n= qll’1 ...q"%, then
f(mn) =TT f(pe)™ f(@)" = f(m)f(n).

Since ¢ = p* N, and p and N are multiplicative, the result follows from
Theorem 2.14.

(2) Y uld)oo(d) = [T(1 = oo(p) = [[(-1) = (=1)"

d|n pln pln

(b) Y wudor(d) = [0 = o1(p) = [[(=p) = (1) p1p2. ..,
din pln pln

(c) D _u(d)/d=T[00-1/p)= (1 =1/p)(1 = 1/ps)... (1= 1/p;)
d|n pln

= ¢(n)/n, by Theorem 2.4.
(@) Y du(d)=[[(1=p) =@ =p)(1=p2)...(1=p,)

d|n pln
= d)_l(n), by the Example on page 37 of Apostol.

n | 1 12 13 14 15 16 17 18 19 20
An) -1 -1 -1 1 1 1 -1 -1 -1 -1
oo(n)| 2 6 2 4 4 5 2 6 2 6
oi(n)| 12 28 14 24 24 31 18 39 20 42
If n=pi'...po, then og(n) = (a1 +1)...(ar + 1). If 5g(n) is odd, then

each term ay + 1 is odd, so that each ay is even and n is a perfect square.
Conversely, if n is a perfect square, then each ay, is even, so that og(n) is
odd.

Alternatively, pair off the divisors d and n/d. Then d pairs with itself if
and only if n = d2. The result now follows easily.



2.30 Zag = (og xu)(n) = {(N? xu) * u}(n) = {(ux*u) * N*}(n)
i —»EE:OO n/d _’n2§E:OU /d2

d|n
231 Take a = p, f=u and F(z) = [z]; then

Soum) Y [] = e (we F)}a)

n<a m<a/n ={(u*xu)o F}x)=(IToF)(x)=F(x)=[z]

232 Ifa=wuand F(z) =1 for x > 1, then G(z Zl—

n<e

So, by Theorem 2.23, 1 = Z p(n)[z/n], as required.

2.33 Putting z =1 gives
G(1) = a()F(1) = P(1) = p(D)a()G(1),

which is true since p(1) = a(1) = 1.
Putting x = 2 gives

G(2) = a()F(2) + a2)F(1) < F(2) = p()a(1)G(2) + p(2)a(2)G(1),
which is true since p(1) = a(1) =1, u(2) = =1 and F(1) = G(1).

Chapter 3
3.1  All are true except (b) and (h).

3.2 |f(x)| < Mg(x), so

([ﬂWﬂ<[ﬁ@W<l”@@ﬁ=MAZ®ﬁ

as required.

3.3 hm f(x)/g(x) =1 and th g(z)/h(z) =1, so
L) T )

et h(z)  amoo g(x)  h(z)

i T o)
- xl—mx) g(z) acleoo h(x)

3.4  When f(z) =1, the left-hand side is [z], and the right-hand side is
(x—1)+0+4+1—(z—[z]) = [=].
When f(z) = , the left-hand side is 1 4+ 2 + - -+ + [2] = $[2]([z] + 1),
and the rlght hand side is
L@ - +Li@?-1)-Q+2+ -+ z—1+[z](x—[2])) + 1 — (z — [z])z,
which reduces to 1[z]([z] +1).

35 (a) Z 711zlogx—/lw(t—[t])/tzdt—i-l—(x—[;v])/x

DEDY %: . 1_8__3 2 —s/lw(t—[t])/ts+1dt+1—(x—[x})/xs
<n<Lz ma+1-_ N
Z n® = (a+11>—|—a/1 (t—[thto tdt + 1 — (z — [z])z®

1<n<Le
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3.6

3.7

3.8

3.9

3.10

3.11

3.12

a) 222+ O(
b) 1z 4+ O(
e

( 2), by part ().
( 2

() e

(

(

(

x?), by part (d).
x%), by part (d).

d) —% +¢(2) + O(x72), by part (b).

) 2z +((2) + O(z~1/2), by part (b).
) O(z~1), by part (c).

(b) > n? =385 ta° = 333.

n<10

(d) > n7? =1.5498; — 5 + ((2) = 1.5449.

n<10

The first step is to write > d(n) as a sum involving the lattice points on
the hyperbolas gd =1, ..., gd = [z]. To count these lattice points we fix d
and let ¢ range from 1 to x/d, using the results of the previous section to
give us the required estimates. This yields the weak version

> d(n) ~ xlogx. To obtain Dirichlet’s form of the result, we use the
symmetry of the hyperbolas about the diagonal, again using the results of
the previous section to give us the required estimates.

D pn) =1+1+2+2+4+2+6+4+6+4 =32 300/7> = 30.39 .. .
n<10

Summing over the lattice points in the hyperbolic region shown, we have

H(@)= > fldgle)=_fd) > glg) = Zf(n)G(%)
ad

) d<z g<z/d n<x
qd<z
Similarly,
X
H(z)= > fldglg) = glq) Y  f(d)= Zg(”)F(g)-
gﬁ gz d<z/q n<x
qaxx

> F(dgla) = F(1)g(1) + f(2)g9(1) + F(3)g(1) + F(4)g(1) + F(1)g(2)
ot T 12)9(2) + F()g(3) + F(Dg(4).
(a) The right-hand side of (24) is

FOGE) + Y g F (

n<4

F
= Zg(n)F(

= g(\l)F(4) +9(2)F(2) +g(3)F(4/3) + g(4)F(1)
=g(W{f() + f(2)+ f3) + f(4)} +9(2{f(1) + f(2)}
+9(3)f(1) +g(4)f(1),

FL)G()

2"
W)
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which agrees with the above sum.
(b) The right-hand side of (24) is

{Ff(NGME) + F(2)GQ2)} +{9(1)F(4) + g(2)F(2)} — F(2)G(2)

( Hg(1) +g(2 ) 9(3) +9(4)} + f(2){g(1) + g(2 )}
+9W{fQ) + f(2) + fB) + f(O)} + 9(2){f (1) + f(2)}
= {fMg(@) + f(1)g(2) + f(2)9(1) + f(2)9(2)},
which simplifies to the above sum.
313 > un) [43] =4p(1) +2u(2) + 1u(3) + 1p(4) =4—-2-1+0=1.
41
> An) [n?] = 4A(1) + 2A(2) + 1A(3) + 1A(4)
n<dy =0+ 2log2 +log 3 + log 2 = log 24 = log([41]").
p(n) (1) |, p@2) | w3 w4 11 1
<Z4; - ‘“ + o “123+0‘6<1.

314 o(7) = [0 + [R] + [58] =71+10+1 =82,
so the highest power is 752.

315 a(2) =[]+ [R]+[R]=5+2+1=8
aB)=[R]+[R]=3+1=4 a6)=[2]=2; on)=[2]=1
So 10! = 2831527,

3.16 Z A(n) {10112] = 10A(1) + 5A(2) + 3A(3) + 2A(4) + 2A(5) + 1A(6) + 1A(7)
n<103 + 1A(8) + 1A(9) + 1A(10)
=0+4+5log2+3log3+2log2+2logb+ 0+ log7+log2+log3+0
=8log2 +4log3 + 2logb + log 7.

zp:mi:l [g)m;] logp = ([mf]f Fié} + [1(;1 D log2 + ([12 ] + {13 D log 3
(2] s+ [ 2]

=0B+2+1)log2+ (3+1)log3+2logh+log7
=8log2+4log3+ 2logb +log 7.

Chapter 4

41 (a) 10, 11.

(b) 3log2+ 2log3 +logh + log 7 + log 11;
4log2 + 2log3 4 log 5 +log 7 + log 11 4 log 13.

(c) log2+log3+logh+log7+logll +log13 (for both answers).

4.2
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