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Chapter 1

Introduction & Guide (E)

1.1 Introduction (E)

This module is about two related mathematical concepts which are of use in many
areas of applied mathematics, are of immense importance in formulating the laws of
theoretical physics and also produce important, interesting and some unsolved math-
ematical problems. These are the functional and variational principles, the theory of
which is named The Calculus of Variations.

A functional is a generalisation of a function of one or more real variables. A real
function of a single real variable maps an interval of the real line to real numbers: for
instance, the function (1 + 22)~! maps the whole real line to the interval (0,1]; the
function In x maps the positive real axis to the whole real line. Similarly a real function
of n real variables maps a domain of R™ into the real numbers.

A functional maps a given class of functions to real numbers. A simple example of a
functional is

Sy = / dr Ity @2 y(0) =0, y(1) =1, (1.1)

which associates a real number with any real function y(x) which satisfies the boundary
conditions and for which the integral exists. We use the square bracket notation® S[y]
to emphasise the fact that the functional depends upon the choice of function used to
evaluate the integral. In chapter 2 we shall see that a wide variety of problems can be
described in terms of functionals. Notice that the boundary conditions, y(0) = 0 and
y(1) = 1 in this example, are often part of the definition of the functional.

Real functions of n real variables can have various properties; for instance they can be
continuous, they may be differentiable or they may have stationary points and local and
global maxima and minima: functionals share many of these properties. In particular
the notion of a stationary point of a function has an important analogy in the theory
of functionals and this gives rise to the idea of a wariational principle, which arises

n this module we use conventions common in applied mathematics and theoretical physics. A
function of a real variable z will usually be represented by symbols such as f(z) or just f, often with
no distinction made between the function and its value. Similarly, we use the older convention, S[y],
for a functional, to emphasise that y is itself a function.

9



10 CHAPTER 1. INTRODUCTION & GUIDE (E)

when the solution to a problem is given by the function making a particular functional
stationary. Variational principles are common and important in the natural sciences.

The simplest example of a variational principle is that of finding the shortest distance
between two points. Suppose the two points lie in a plane, with one point at the
origin, O, and the other at point A with coordinates (1,1), then if y(z) represents
a smooth curve passing through O and A the distance between O and A, along this
curve is given by the functional defined in equation (1.1). The shortest path is that
which minimises the value of S[y]. If the surface is curved, for instance a sphere or
ellipsoid, the equivalent functional is more complicated, but the shortest path is that
which minimises it.

Variational principles are important for three principal reasons. First, many problems
are naturally formulated in terms of a functional and an associated variational principle.
Several of these will be described in chapter 2 and some solutions will be obtained as
the module develops.

Second, most equations of mathematical physics can be derived from variational prin-
ciples. This is important partly because it suggests a unifying theme in our description
of nature and partly because such formulations are independent of any particular co-
ordinate system, so making the essential mathematical structure of the equations more
transparent and easier to understand. This aspect of the subject is not considered
in this module; a good discussion of these problems can be found in Yourgrau and
Mandelstam (1968)2.

Finally, variational principles provide powerful computational tools; we explore aspects
of this theory in chapter 13.

Consider the problem of finding the shortest path between two points on a curved
surface. The associated functional assigns a real number to each smooth curve joining
the points. A first step to solving this problem is to find the stationary values of the
functional; it is then necessary to decide which of these provides the shortest path. This
is very similar to the problem of finding extreme values of a function of n variables,
where we first determine the stationary points and then classify them: the important
and significant difference is that the space of allowed functions is not usually finite
in dimension. The infinite dimensional spaces of functions, with which we shall be
dealing, has many properties similar to those possessed by finite dimensional spaces,
and in the many problems the difference is not significant. However, this generalisation
does introduce some practical and technical difficulties some of which are discussed in
section 4.6.

In elementary calculus and analysis, the functions studied first are ‘real functions, f,
of one real variable’, that is, functions with domain either R, or a subset of R, and
codomain R. Without any other restrictions on f, this definition is too general to be
useful in calculus and applied mathematics. Most functions of one real variable that
are of interest in applications have smooth graphs, although sometimes they may fail
to be smooth at one or more points where they have a ‘kink’ (fail to be differentiable),
or even a break (where they are discontinuous). This smooth behaviour is related to
the fact that most important functions of one variable describe physical phenomena
and often arise as solutions of ordinary differential equations. Therefore it is usual to
restrict attention to functions that are differentiable or, more usually, differentiable a

2Yourgrau W and Mandelstam S Variational Principles in Dynamics and Quantum Theory, Pit-
man.
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number of times.

The most useful generalisation of differentiability to functions defined on sets other
than R requires some care. It is not too hard in the case of functions of several (real)
variables but we shall have to generalise differentiation and integration to functionals,
not just to functions of several real variables.

Our presentation conceals very significant intellectual achievements made at the end
of the nineteenth century and during the first half of the twentieth century. During
the nineteenth century, although much work was done on particular equations, there
was little systematic theory. This changed when the idea of infinite dimensional vector
spaces began to emerge. Between 1900 and 1906, fundamental papers appeared by
Fredholm?, Hilbert*, and Fréchet®. Fréchet’s thesis gave for the first time definitions of
limit and continuity that were applicable in very general sets. Previously, the concepts
had been restricted to special objects such as points, curves, surfaces or functions. By
introducing the concept of distance in more general sets he paved the way for rapid
advances in the theory of partial differential equations. These ideas together with the
theory of Lebesgue integration introduced in 1902, by Lebesgue in his doctoral thesis®,
led to the modern theory of functional analysis. This is now the usual framework of
the theoretical study of partial differential equations. They are required also for an
elucidation of some of the difficulties in the Calculus of Variations. However, in this
introductory module, we concentrate on basic techniques of solving practical problems,
because we think this is the best way to motivate and encourage further study.

1.2 Guide (E)

The principal source of information for the module is the module VLE” site, which
you should consult regularly. In particular, there you will find the study calendar, the
Tutor Marked Assignments (TMAs), their submission cut-off dates, the two specimen
examinations, several screencasts and eLectures. Of particular use is the module forum
(and other forums for the MSc programme) which provides an opportunity for you to
discuss the module, interact with other students, and ask for help with the exercises
(but not with the TMAs). The forum is moderated and is a great resource for you and
for other students on the module.

The most important resources for you are these module notes with their exercises and
solutions. Written by Professor Derek Richards, they have been slightly reorganised
and edited, leaving most of the original notes intact. Many thanks to colleagues for
their help in the production of these revised notes. Especial thanks must go to the
many M820 students who have found errors in previous versions of the notes and who
have made suggestions for improvements.

31. Fredholm, On a new method for the solution of Dirichlet’s problem, reprinted in Oeuvres
Completes, I'Institut Mittag-Leffler, (Malmo) 1955, pp 61-68 and 81-106.

4D. Hilbert published six papers between 1904 and 1906. They were republished as Grundzige
esner allgemeinen Theorie der Integralgleichungen by Teubner, (Leipzig and Berlin), 1924. The most
crucial paper is the fourth.

5M. Fréchet, Doctoral thesis, Sur quelques points du Calcul fonctionnel, Rend. Circ. Mat. Palermo
22 (1906), pp 1-74.

SH. Lebesgue, Doctoral thesis, Paris 1902, reprinted in Annali Mat. Pura e Appl., 7 (1902) pp
231-359.

"Virtual Learning Environment, accessible via the Internet.
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As Professor Richards has written, ‘Very many exercises are set in the belief that
mathematical ideas cannot be understood without attempting to solve problems at
various levels of difficulty and that one learns most by making one’s own mistakes,
which is time consuming. You should not attempt all these exercise at a first reading,
but these provide practice of essential mathematical techniques and in the use of a
variety of ideas, so you should do as many as time permits; thinking about a problem,
then looking up the solution is usually of little value until you have attempted your
own solution.’

Indeed, because so many exercises have been set, they have now been classified as
described in section 1.2.1.

The Calculus of Variations builds on real analysis and Appendix A introduces many of
the ideas needed for our treatment of the Calculus of Variations. It is possible that you
are already familiar with the mathematics described in this appendix, in which case
you could start the module with chapter 2. You should ensure, however, that you have
a good working knowledge of differentiation, both ordinary and partial, Taylor series
of one and several variables, and differentiation under the integral sign, all of which are
necessary for the development of the theory. In addition familiarity with the theory of
linear differential equations with both initial and boundary value problems is assumed,
although this material is revised and expanded on in Chapter 3.

1.2.1 Chapter, section and exercises labelling (E)

To assist your studies, chapters and sections have been labelled so that you can focus
your studies appropriately. The key to the labelling is:

1. Label: E for Essential Core. This material forms the essential core of the module
and may be included in assessment. To pass the module you should aim to achieve
fluency in the essential core material.

2. Label: C for Core. This material is part of the core of the module and may be
included in assessment. Although core material, it isn’t quite as fundamental as
the essential core material. To obtain a good pass in the module you should aim
to achieve fluency in the essential core and the core material.

3. Label: B for Background Material. This material, most of which is in Appendix A,
is background material which is used by the other parts of the module. You should
have come across most of this subject matter before, but there may be parts that
are new to you and others which you need to revise. It is suggested that at the
start of your studies you take a quick look through this background material, but
do not spend much time on it at the beginning, returning to it if you need it later
on. The material is not assessed in itself, but you will need to be familiar with it
when you do the assessments.

4. Label: O for Optional Material. This material consists of additional material/examples/topics
which form an important section of the module but which are suitable for omission
for students who are short of study time. Although material from these sections
may be included in assessment it will not be assumed that you are familiar with
the material.

5. Label: + for Extension Material. This material consists of additional mate-
rial/examples/topics which provide an extension to the core and optional material.
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You are not expected to study this material. Although topics from these sections
may occasionally be included in assessment, it will not be assumed that you are
familiar with the material.

In a similar manner the exercises are labelled as follows:

1. Label: E for Essential. These exercises are essential as they give essential practice
in the core material and are highly useful practice for module assessment. Full
solutions are given to these exercises.

2. Label: R for Recommended. These exercises are recommended as they give prac-
tice in the core material and are useful practice for module assessment. Full
solutions are given to these exercises.

3. Label: B for Background. These exercises give practice in the background material
and they should be studied as needed. Most of these exercises are in Appendix A.

4. Label: O for Optional. These exercises either provide practice in optional material
or arc optional exercises for core material. Solutions may only be in outline, with
gaps to be filled by the reader. The study of these exercises is not required for
module assessment. Although these exercises may be used for assessment, it will
not be assumed that you are familiar with the material.

5. Label: + for Extension. These exercises provide practice and additional mate-
rial/examples/topics which provide an extension to the core and/or optional ma-
terial. Solutions may only be in outline, with gaps to be filled by the reader. The
study of these exercises is not required for module assessment. Although these
exercises may be used for assessment, it will not be assumed that you are familiar
with the material.

1.2.2 Overview of the chapters (E)

Chapter 2. The Calculus of Variations (E) This chapter gives an introduction
to the principal ideas of the Calculus of Variations and gives a description of the main
applications of the theory that are discussed later on in the notes. The applications
are important historically and interesting intrinsically, but you will not be required
to reproduce them. However, there may well be applications as part of the module
assessment.

Chapter 3. Ordinary differential equations (E) This is an important chapter
as much of the subsequent material requires a facility with the techniques of solving
ordinary differential equations described in this chapter. You may have met much of
the material in this chapter before. You should study this chapter, but do not spend
too long at the first reading. It is better to return to the chapter as needed when
you are studying the rest of the notes. The most important sections of chapter 3
are: 3.1 Order notation; 3.3 General definitions; 3.4 First-order equations, in particular
3.4.2 Separable and homogeneous equations; 3.4.3 Linear first-order equations; 3.4.5
Riccati’s equation; and 3.5 Second-order equations.

Chapter 4. The Euler—Lagrange equation (E) The Euler-Lagrange equation is
fundamental to the calculus of variations and you must study this chapter in particular
detail. After reading the introductory material, you must understand the Gateaux
differential of a functional and what it means for a functional to be stationary (4.2.3).
The sections 4.3 Fundamental Lemma; 4.4 The Euler-Lagrange Equations; and 4.4.1
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The first-integral are particularly important. You might find the section 4.6 on Strong
and Weak Extrema initially puzzling, but it is important to understand the difference
between them.

Chapter 5. Applications of the Euler—-Lagrange Equation (E) This chapter
applies the Euler-Lagrange equation to some of the problems introduced in Chapter 2.
The material is very interesting but not easy. The brachistochrone is one of the most
famous examples in the Calculus of Variations and is particularly worthy of study.

Chapter 6. Further theoretical developments (E) This chapter contains im-
portant material, in particular 6.2 Invariance of the Euler-Lagrange equation and 6.3
Functionals with many dependent variables.

Chapter 7. Symmetries and Noether’s theorem (E) Many mathematical prob-
lems which would otherwise be difficult can be solved more easily if we may make use
of any symmetries. This important chapter shows that symmetries of functionals lead
to an invariant first-integral through Noether’s theorem.

Chapter 8. The second variation (E) In this chapter the second variation of
a functional is analysed and conditions are derived for a stationary solution to be a
local weak maximum or a local weak minimum. You may already be familiar with the
results of subsection 8.2 Stationary points of functions of several variables. Particularly
important material in this chapter is as follows. In 8.3 the second variation of a
functional is defined and in 8.4 the second variation is analysed to get a sufficient
criterion for a local extremum in terms of the non-existence of conjugate points and
the Jacobi equation. This theory is applied to the Brachistochrone problem in 8.6.

Chapter 9. The parametric representation of functionals (E) In this chapter,
functionals defined in terms of curves that are expressed parametrically are discussed.
In 9.1 the parametric representation of curves is discussed and in 9.2 parametrically
defined functionals are introduced, and a homogeneity criterion is given for a given
parametric functional to be a representation of a standard functional. An important
application is to geodesic curves on surfaces (9.2.1).

Chapter 10. Variable end points (E) This chapter describes how to deal with
variational problems in which one of the endpoints is not fixed, but replaced by a
natural boundary condition. Important sections are: 10.1 Introduction; 10.2 Natural
boundary conditions; 10.3 Variable end points; 10.4 Parametric functionals.

Chapter 11. Conditional stationary points (E) In this chapter we discuss the
method of Lagrange multipliers to find extrema of functions of several variables subject
to a constraint. This material is sometimes included in undergraduate mathematics
degrees, but is important so it is reviewed in this module.

Chapter 12. Constrained variational problems (E) In this chapter, we introduce
functionals for which the stationary curves are subject to a constraint, usually also
expressed in functional form. These are studied by forming an auxiliary functional
incorporating the constraint via a Lagrange multiplier. The catenary studied in 12.2.3
is a classical application of this theory. Section 12.6 on the Lagrange Problem is not
assessed. The sections 12.7 and 12.8 are interesting but lengthy extensions of the
brachistochrone problem.

Chapter 13. Sturm-Liouville systems (C) The material covered in Chapter 13
is an important area of mathematics in its own right, forming the foundation of the
solution of many of the classical partial differential equations of mathematical physics.
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This topic in advanced calculus is connected with the Calculus of Variations, although
much of the material in this chapter can be studied separately from the main theme
of the module. It is therefore designated as core rather than essential material. The
sections of particular importance are: 13.1 Introduction; 13.2 The Origin of Sturm—
Liouville Systems; 13.3 Eigenvalues and functions of simple systems (apart from the
optional 13.3.1 on Bessel functions); 13.4 Sturm—Liouville Systems (except the optional
13.4.3 Oscillation theorem). Note that section 13.2 The Origin of Sturm—Liouville
Systems is not assessed.

Chapter 14. The Rayleigh—Ritz method (C) The final chapter of the module
combines the work in Chapters 13 Sturm-Liouville systems and 12 Constrained varia-
tional problems to introduce an important approximation technique: the Rayleigh—Ritz
method. Tt is used when (as is frequently the case) it is not possible to obtain an exact
solution of a Sturm—Liouville problem.

Appendix A. Background material on calculus (B) This chapter contains
preparatory and revision material which you will most likely have encountered pre-
viously. Make sure you are familiar with all of this material. Of particular importance
are the sections on partial derivatives, implicit functions, Taylor series for several vari-
ables and integration.

Appendix B. Solutions to Exercises This appendix includes the solutions to all
the exercises in the module notes. Some solutions are full and others are concise or in
outline only.
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Chapter 2

The Calculus of Variations (E)

2.1 Introduction (E)

In this chapter we consider the particular variational principle defining the shortest
distance between two points in a plane. It is well known that this shortest path is
the straight line, however, it is almost always easiest to understand a new idea by
applying it to a simple, familiar problem; so here we introduce the essential ideas of
the Calculus of Variations by finding the equation of this line. The algebra may seem
overcomplicated for this simple problem, but the same theory can be applied to far
more complicated problems, and we shall see in chapter 4 the most important equation
of the Calculus of Variations, the Euler—Lagrange equation, can be derived with almost
no extra effort.

The chapter ends with a description of some of the problems that can be formulated
in terms of variational principles, some of which will be solved later in the module.

The approach adopted is intuitive, that is we assume that functionals behave like
functions of n real variables. This is exactly the approach used by Euler (1707-1783)
and Lagrange (1736-1813) in their original analysis and it can be successfully applied
to many important problems. However, it masks a number of problems, all to do
with the subtle differences between infinite and finite dimensional spaces which are not
considered in this module.

2.2 The shortest distance between two points in a
plane (E)

The distance between two points P, = (a, A) and P, = (b, B) in the Oxy-plane along
a given curve, defined by the function y(z), is given by the functional

b
Syl :/ dz /14y (z)2. (2.1)

The curve must pass through the end points, so y(z) satisfies the boundary conditions,
y(a) = A and y(b) = B. We shall usually assume that y'(z) is continuous on (a, b).

17
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We require the equation of the function that makes S[y] stationary, that is we need to
understand how the values of the functional S[y] change as the path between P, and
P, varies. These ideas are introduced here, and developed in chapter 4, using analogies
with the theory of functions of many real variables.

2.2.1 The stationary distance (E)

In the theory of functions of several real variables a stationary point is one at which the
values of the function at all neighbouring points are ‘almost’ the same as at the station-
ary point. To be precise, if G(x) is a function of n real variables, x = (21, z2,...,2,),
we compare values of G at x and the nearby point x + €£, where |¢] < 1 and |£] = 1.
Taylor’s expansion, equation (A.35) (page 373), gives,

G(X+e£)7G(x):ezg—iékJrO(eQ). (2.2)
k=1

A stationary point is defined to be one for which the term O(e) is zero for all €. This
gives the familiar conditions for a point to be stationary, namely 0G/dxz = 0 for
k=12, ....,n.

For a functional we proceed in the same way. That is, we choose adjacent paths joining
P, to P, and compare the values of S along these paths. If a path is represented by a
differentiable function y(z), adjacent paths may be represented by y(z) 4 eh(x), where
€ is a real variable and h(x) another differentiable function. Since all paths must pass
through P, and Py, we require y(a) = A, y(b) = B and h(a) = h(b) = 0; otherwise
h(z) is arbitrary. The difference

0S5 = S|y +eh] — Sy,

may be considered as a function of the real variable ¢, for arbitrary y(z) and h(z) and
for small values of €, |¢] < 1. When ¢ =0, 45 = 0 and for small |¢] we expect 0.5 to
be proportional to €; in general this is true as seen in equation (2.3) below.

However, there may be some paths for which 45 is proportional to €2, rather than
€. These paths are special and we define these to be the stationary paths, curves or
stationary functions. Thus a necessary condition for a path y(x) to be a stationary
path is that

Sy +eh] = Sly) = O (),

for all suitable h(z). The equation for the stationary function y(x) is obtained by
examining this difference more carefully.

The distances along these adjacent curves are

b b
Sly] = / dr \/1+y'(z)?, and Sy+eh]= / dz \/1 + [y (z) + eh/(x)]°.

a

We proceed by expanding the integrand of S[y + eh] in powers of ¢, retaining only the
terms proportional to e. One way of making this expansion is to consider the integrand
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as a function of € and to use Taylor’s series to expand in powers of ¢,

d
1+ (y +eb')? = 1+y/2+e{£ 1+(y’+eh’)2} +0 (€%)
e=0
/h/
= 1+y’2—|—ey——|—0(62).
1+y/2

Substituting this expansion into the integral and rearranging gives the difference be-
tween the two lengths,
S [y + eh] — S[y] G W (z) + O (¢?) (2.3)
eh] — =€ r ——————N'(x €). .
’ ! a 1+y/(2)?

This difference depends upon both y(«) and h(z), just as for functions of n real variables
the difference G(x + €€) — G(x), equation (2.2), depends upon both x and &, the
equivalents of y(z) and h(x) respectively.

Since S[y] is stationary it follows, by definition, that

b !
dx &h'(x) =0 (2.4)
a L4y (x)?
for all suitable functions h(z).
We shall see in chapter 4 that because (2.4) holds for all those functions h(z) for which
h(a) = h(b) = 0 and h/(x) is continuous, this equation is sufficient to determine y(x)
uniquely. Here, however, we simply show that if

/
_v@ = «a = constant for all x, (2.5)
1+y'(x)?
then the integral in equation (2.4) is zero for all h(z). Assuming that (2.5) is true,
equation (2.4) becomes

b
/ dx ab/(z) = a{h(b) — h(a)} =0 since h(a) = h(b) =0.

In section 4.3 we show that condition (2.5) is necessary as well as sufficient for equa-
tion (2.4) to hold.

Equation (2.5) shows that y'(x) = m, where m is a constant, and integration gives the
general solution,
y(z) =mz +c¢

for another constant c: this is the equation of a straight line as expected. The constants
m and c are determined by the conditions that the straight line passes through P, and
By

B-A Ab — Ba
“h—a” * b—a
This analysis shows that the functional S[y] defined in equation (2.1) is stationary
along the straight line joining P, to P,. We have not shown that this gives a minimum
distance: this is proved in exercise 2.2.

y(x) (2.6)
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Exercise 2.1 (E) Use the above method on the functional

Sly) = /0 dr VITy@), y0)=0, y(1)=B> -1,

to show that the stationary function is the straight line y(z) = Bz, and that the value
of the functional on this line is S[y] = V1 + B. O

2.2.2 The shortest path: local and global minima (E)

In this section we show that the straight line (2.6) gives the minimum distance. For
practical reasons this analysis is divided into two stages. First, we show that the
straight line is a local minimum of the functional, using an analysis that is generalised
in chapter 8 to functionals. Second, we show that, amongst the class of differentiable
functions, the straight line is actually a global minimum: this analysis makes use of
special features of the integrand.

The distinction between local and global extrema is illustrated in figure 2.1. Here we
show a function f(x), defined in the interval @ < x < b, having three stationary points
B, C and D, two of which are minima, the other being a maximum. It is clear from the
figure that at the stationary point D, f(z) takes its smallest value in the interval — so
this is the global minimum. The function is largest at A, but this point is not stationary
— this is the global maximum. The stationary point at B is a local minimum, because
here f(z) is smaller than at any point in the neighbourhood of B: likewise the points
C and D are local maxima and minima, respectively. The adjective local is frequently
omitted. In some texts local extrema are named relative extrema.

e

Figure 2.1: Diagram to illustrate the difference between local and global extrema.

It is clear from this example that to classify a point as a local extremum requires an
examination of the function values only in the neighbourhood of the point. Whereas,
determining whether a point is a global extremum requires examining all values of the
function; this type of analysis usually invokes special features of the function.

The local analysis of a stationary point of a function, G(x), of n variables proceeds by
making a second order Taylor expansion about a point x = a,

7 e 1 o 0°G
G(a+e§)_G(a)+e;Tm§k+§e ;;—ﬁkﬁj+...,

aTkaTj

where all derivatives are evaluated at x = a. If G(x) is stationary at x = a then all
first derivatives are zero. The nature of the stationary point is usually determined by
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the behaviour of the second-order term. For a stationary point to be a local minimum
it is necessary for the quadratic terms to be strictly positive for all £, that is

Z R 8x'§k€j >0 forall &, &, k, j=1,2,...,n,
k=1 j=1 kYT

with |£] = 1. The stationary point is a local maximum if this quadratic form is strictly
negative. For large n it is usually difficult to determine whether these inequalities are
satisfied, although there are well defined tests which are described in chapter 8.

For a functional we proceed in the same way: the nature of a stationary path is usually
determined by the second-order expansion. If S[y] is stationary then, by definition,

Sly +eh] — Sly] = %Az [y, h] €+ O ()

for some quantity As[y, h], depending upon both y and h; special cases of this expansion
are found in exercises 2.2 and 2.3. Then S[y| is a local minimum if Ayfy, h] > 0 for
all h(z), and a local maximum if Asfy,h] < 0 for all h(z). Normally it is difficult
to establish these inequalities, and the general theory is described in chapter 8. For
the functional defined by equation (2.1), however, the proof is straightforward; the
following exercise guides you through it.

Exercise 2.2 (R)

(a) Use the binomial expansion, exercise A.28 (page 372), to obtain the following
expansion in €,

2.2
l+(a+€,3)2=\/l+oc2+\/%4-2(1?_;2)3/2 +0 ().

(b) Use this result to show that if y(x) is the straight line defined in equation (2.6)
and S[y] the functional (2.1), then,
2 B—-A

b
Sy +eh] — Sly] = /dmh/(w)2+0(63), m=—

€
2(1+ m2)3/2

Deduce that the straight line is a local minimum for the distance between P, and
Py O

Exercise 2.3 (E) In this exercise the functional defined in exercise 2.1 is considered
in more detail. By expanding the integrand of S[y+ eh] to second order in e show that,
if y(z) is the stationary path, then

€2

S[y—l—eh]zS[y]—W/o dx h'(z)2, B> —1.

Deduce that the path y(x) = Bz, B > —1, is a local maximum of this functional. O
Now we show that the straight line between the points (0,0) and (a, A) gives a global

minimum of the functional, not just a local minimum. This analysis relies on a special
property of the integrand that follows from the Cauchy—Schwarz inequality.
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Exercise 2.4 (E) Use the Cauchy—Schwarz inequality (page 378) with a = (1, 2) and
b= (1,z + u) to show that

\/1—|—(z—|—u)2\/1—|—2221+22+zu.

with equality only if © = 0. Hence show that
zu
1+ (z+u)’—V1+22> ——— O
Vit (z+u) -V i

The distance between the points (0,0) and (a, A) along the path y(z) is

Sty = /Oadx\/uy@, y(0) =0, yla) = A.

On using the inequality derived in the previous exercise, with z = y/(z) and v = I/ (z),

we see that
a /

Y /
Sly+h]—Slyl > [ de —"'.
0 VI9I+y?
But on the stationary path y’ is a constant and since h(0) = h(a) = 0 we have

Sly + h] > S[y] for all h(x).

This analysis did not assume that |h| is small, and since all admissible paths can be
expressed in the form y(z) + h(x), we have shown that in the class of differentiable
functions the straight line gives the global minimum of the functional.

An observation

Problems involving shortest distances on surfaces other than a plane illustrate other
features of variational problems. Thus if we replace the plane by the surface of a
sphere then the shortest distance between two points on the surface is the arc length
of a great circle joining the two points — that is the circle created by the intersection
of the spherical surface and the plane passing through the two points and the centre of
the sphere; this problem is examined in exercise 5.20 (page 135). Now, for most points,
there are two stationary paths corresponding to the long and the short arcs of the great
circle. However, if the points are at opposite ends of a diameter, there are infinitely
many shortest paths. This example shows that solutions to variational problems may
be complicated.

In general, the stationary paths between two points on a surface are named geodesics®.
For a plane surface the only geodesics are straight lines; for a sphere, most pairs of
points are joined by just two geodesics that are the segments of the great circle through
the points. For other surfaces there may be several stationary paths: an example of
the consequences of such complications is described next.

2.2.3 Gravitational Lensing (O)

The general theory of relativity, discovered by Einstein (1879-1955), shows that the

)

path taken by light from a source to an observer is along a geodesic on a surface in a

Tn some texts the name geodesic is used only for the shortest path.
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four-dimensional space. In this theory gravitational forces are represented by distor-
tions to this surface. The theory therefore predicts that light is ‘bent’ by gravitational
forces, a prediction that was first observed in 1919 by Eddington (1882-1944) in his
measurements of the position of stars during a total solar eclipse: these observations
provided the first direct confirmation of Einstein’s general theory of relativity.

The departure from a straight line path depends upon the mass of the body between the
source and observer. If it is sufficiently massive, two images may be seen as illustrated
schematically in figure 2.2.

Quasar Image

Quasar Image

Figure 2.2: Diagram showing how an intervening galaxy can sufficiently distort a path of light from a
bright object, such as a quasar, to provide two stationary paths and hence two images. Many examples
of such multiple images, and more complicated but similar optical effects, have now been observed.
Usually there are more than two stationary paths.

2.3 Two generalisations (E)

2.3.1 Functionals depending only upon ¢/'(z) (E)

The functional (2.1) (page 17) depends only upon the derivative of the unknown func-
tion. Although this is a special case it is worth considering in more detail in order to
develop the notation we need.

If F(z) is a differentiable function of z then a general functional of the form of (2.1) is

b
Stl= [ s F@). y@=A ) =B (2.7
where F'(y') simply means that in F(z) all occurrences of z are replaced by 3/(z). Thus
for the distance between two points F(z) = v/1+ 22 so F(y') = /1 +y/'(z)?. Note

that the symbols F(y') and F(y'(x)) denote the same function.

The difference between the functional evaluated along y(z) and the adjacent paths
y(x) + eh(z), where |e] < 1 and h(a) = h(b) =0, is

b
Sly+eh]— Syl = / dr {F(y +eb')—F(y)}. (2.8)

Now we need to express F'(y' +¢eh’) as a series in €; assuming that F'(z) is differentiable,
Taylor’s theorem gives
dF

F(z+eu)=F(z)+euE+O(62).
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The expansion of F(y'+eh’) is obtained from this simply by the replacements z — 3/ (z)
and u — h/(x), which gives

d
F(y +eh) = F(y) = 6hf’(m)d—y,F (W) +0 () (2.9)
where the notation dF/dy’ means
d dF
—F(y)= — 2.10
=T (210)
For instance, if F(z) = v/1 4 22 then
dF  z and dF Y (x)
dz 1+ 22 dy 1ty (x)?
Exercise 2.5 (E) Find the expressions for dF'/dy’ when
1/4
() F ()= (1+y)"",
(b) F(y) =siny/,
(©) F(y) =exp(y). o
Substituting the difference (2.9) into the equation (2.8) gives
b
d
S [y + eh] — S[y] :e/ dx h’(a:)d—yF(y/)—i—O(eZ) . (2.11)

The functional S[y] is stationary if the term O(e) is zero for all suitable functions h(z).
As before we give a sufficient condition, deferring the proof that it is also necessary. In
this analysis it is important to remember that F(z) is a given function and that y(z)
is an unknown function that we need to find. Observe that if

d
WF (y') = o = constant (2.12)

then
Sly+eh] — Sy] = ea (h(b) — h(a)) + O (¢?) = O (¢*) since h(a) = h(b) = 0.
In general equation (2.12) is true only if /() is also constant, and hence

B-A Ab— B
y(z) = mx + ¢ and therefore y(z)= et b_aa7

the last result following from the boundary conditions y(a) = A and y(b) = B.

This is the same solution as given in equation (2.6). Thus, for this class of functional,
the stationary function is always a straight line, independent of the form of the inte-
grand, although its nature can sometimes depend upon the boundary conditions, see
for instance exercise 2.18 (page 40).

The exceptional example is when F'(z) is linear, in which case the value of S[y] depends
only upon the end points and not the values of y(z) in between, as shown in the
following exercise.

Exercise 2.6 (O) If F(z) = Cz+ D, where C' and D are constants, by showing that
the value of the functional S[y] = f: dx F(y’) is independent of the chosen path, deduce
that equation (2.12) does not imply that y'(x) = constant.

What is the effect of making either, or both C' and D a function of z? O
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2.3.2 Functionals depending upon z and y'(z) (E)

Now consider the slightly more general functional

b
SM:/thF@J% y(a)= A, y(b)=B, (2.13)

where the integrand F(x,y’) depends explicitly upon the two variables x and y’. The
difference in the value of the functional along adjacent paths is

b
Sly+eh] — Sy = / dv {F (z,y +eh') — F (z,y)}. (2.14)

a

In this example F(z, z) is a function of two variables and we require the expansion

F(m,z—&—eu):F(x,z)+eu?9—F+O(e2)
2

where Taylor’s series for functions of two variables is used. Comparing this with the
expression in equation (2.9) we see that the only difference is that the derivative with
respect to ¢’ has been replaced by a partial derivative. As before, replacing z by y'(x)
and u by h/(z), equation (2.14) becomes

b
Sy +eh] — S[y] = e/ dx h’(m)aiy,F (z,y) + O (). (2.15)

If y(z) is the stationary path it is necessary that
b 0
/ dx b (z)=—F (x,y') =0 for all h(x).
a Ay

As before a sufficient condition for this is that F,/(z,y’) = constant, which gives the
following differential equation for y(z),

G%F(l‘:y') =c¢, yla)=A4, yb)=B, (2.16)

where ¢ is a constant. This is the equivalent of equation (2.12), but now the explicit
presence of z in the equation means that y'(z) = constant is not a solution.

Exercise 2.7 (R) Consider the functional

1
Sly] = / de Ttz ty? y(0)=4, y(1)=B5.
Jo
Show that the function y(z) defined by the relation,

Y (z) = cy/ 1+ x4y (2)?

where ¢ is a constant, makes S[y] stationary. By expressing y/(z) in terms of = solve
this equation to show that

S — B-A \3/2
v = A+ g (00 1) a
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2.4 Notation (E)

In the previous sections we used the notation F(y’) to denote a function of the derivative
of y(x) and proceeded to treat y’ as an independent variable, so that the expression
dF/dy’ had the meaning defined in equation (2.10). This notation and its generalisation
are very important in subsequent analysis; it is therefore essential that you are familiar
with it and can use it.

Consider a function F(z,u,v) of three variables, for instance F = xzvu? 4 v2, and
assume that all necessary partial derivatives of F(z,u,v) exist. If y(x) is a function of
x we may form a function of x with the substitutions u — y(z),v — y'(x), thus

F(x,u,v) becomes F(z,y,y).

Depending upon circumstances F(x,y,y’) can be considered either as a function of
b

a single variable x, as when evaluating the integral dr F(x,y(z),y'(z)), or as a

a
function of three independent variables (z,y,y’). In the latter case the first partial
derivatives with respect to y and 3’ are just

OF  OF

OF  OF
dy  Ou

d = =
an oy’ v

u=y,v=y’ u=y,v=y’

Because y depends upon x we may also form the total derivative of F(z,y,y’) with
respect to z using the chain rule, equation (A.20) (page 364)

dF OF OF , oF ,
== o + 8yy (z) + 8y/y (z). (2.17)

In the particular case F'(z,u,v) = zv/u? + v? these rules give

—_— 1 —_— = y——. _— s —
or Ty Oy [y2 +y2 Oy /2 + 2

Similarly, the second order derivatives are

/

¢r_or or_or o8 _ o

Oy? Oou? Toay? T o? and Oyoy’ = Dudw

u=y,v=y’

u=y,v=y’ u=y,v=y’

Because you must be able to use this notation we suggest that you do all the following
exercises before proceeding.

OF OF OF dF d (OF
E : S8 (E) If F N = 24+y? find —, —, =, — g \9.7 )"
xercise 2.8 (E) (z,y") z? +y" find ox’ Oy’ Oy’ dx M <8y/>
Also, show that,
A4 (oFN _ 0 (dF 0
dr \oy') oy \dz )’

Exercise 2.9 (R) Show that for an arbitrary differentiable function F(z,y,y’)

dxr - vt

d (OF\ _&°F , O*F ,  O°F
oy’ Oy'? Oyoy’ Y oxdy’”
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d (oF\ , 9 (dF
dx \ oy’ oy \dx )’

with equality only if F' does not depend explicitly upon y. O

Hence show that

Exercise 2.10 (R) Use the first identity found in exercise 2.9 to show that the equa-
tion

d (OF or 0

dz \ Oy’ oy
is equivalent to the second-order differential equation

0°F "y 0*F - 0*F _OF
oy'? 4 oydy’ 4 oxdy’ Oy

=0. O

Note the first equation will later be seen as crucial to the general theory described in
chapter 4. The fact that it is a second-order differential equation means that unique
solutions can be obtained only if two initial or two boundary conditions are given. Note
also that the coefficient of y”(x), 9*F/9y'?, is very important in the general theory of
the existence of solutions of this type of equation.

2
Exercise 2.11 (O) (a) If F(y,y') = y/1+ y’? find g—F, %, % and show that
Yy oy Y

the equation

d (OF\ OF d2y dy\?
—|z=)—5—=0 b ——-1-|—=) =
e ( 8y’> 3y 0 becomes y 72 ( I 0

and also that
d (OF or on—3/2( 5 d [y
dx ((%/) dy (1+9%) Y \y) )

(b) By solving the equation y?(y'/y)’ = 1 show that a non-zero solution of

d? dy\” 1
yﬁ—l—(ﬁ) =0 is y:Zcosh(A:Jc—i—B),

for some constants A and B. Hint, let y be the independent variable and define a
new variable z by the equation yz(y) = dy/dz to obtain an expression for dy/dx
that can be integrated. O

2.5 Examples of functionals (E)

In this section we describe a variety of problems that can be formulated in terms of
functionals, with solutions that are stationary paths of these functionals. This list is
provided because it is likely that you will not be familiar with these descriptions and
will be unaware of the wide variety of problems for which variational principles are
useful, and sometimes essential. You should not spend long on this section if time
is short; in this case you should aim at obtaining a rough overview of the examples.
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Indeed, you may move directly to chapter 3 and return to this section at a later date,
if necessary.

In each of the following sub-sections a different problem is described and the relevant
functional is written down; some of these are derived later. In compiling this list one
aim has been to describe a reasonably wide range of applications: if you are unfamiliar
with the underlying physical ideas behind any of these examples, do not worry because
they are not an assessed part of the module. Another aim is to show that there are
subtly different types of variational problems, for instance the isoperimetric and the
catenary problems, described in sections 2.5.5 and 2.5.6 respectively.

2.5.1 The brachistochrone (E)

Given two points P, = (a,A) and P, = (b, B) in the same vertical plane, as in the
diagram below, we require the shape of the smooth wire joining P, to P, such that
a bead sliding on the wire under gravity, with no friction, and starting at P, with a
given speed shall reach P, in the shortest possible time.

A

x
P >

Py

Figure 2.3: The curved line joining P, to Py is a segment of a cycloid. In this diagram the axes are
chosen to give a = A = 0.

The name given to this curve is the brachistochrone, from the Greek, brachistos, short-
est, and chronos, time.

If the y-axis is vertical it can be shown that the time taken along the curve y(x) is

b

14972

T = [ doy[Ga v = A )= B,
a C—2gy

where g is the acceleration due to gravity and C' a constant depending upon the initial

speed of the particle. This expression is derived in section 5.2.

This problem was first considered by Galileo (1564-1642) in his 1638 work Two New
Sciences, but lacking the necessary mathematical methods he concluded, erroneously,
that the solution is the arc of a circle passing vertically through P,; exercise 5.4
(page 118) gives part of the reason for this error.

It was John Bernoulli (1667—1748), however, who made the problem famous when in
June 1696 he challenged the mathematical world to solve it. He followed his statement
of the problem by a paragraph reassuring readers that the problem was very useful in
mechanics, that it is not the straight line through P, and P, and that the curve is well
known to geometers. He also stated that he would show that this is so at the end of
the year provided no one else had.
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In December 1696 Bernoulli extended the time limit to Easter 1697, though by this
time he was in possession of Leibniz’s solution, sent in a letter dated 16th June 1696,
Leibniz having received notification of the problem on 9th June. Newton also solved
the problem quickly: apparently? the letter from Bernoulli arrived at Newton’s house,
in London, on 29th January 1697 at the time when Newton was Warden of the Mint.
He returned from the Mint at 4 pm, set to work on the problems and had solved it by
the early hours of the next morning. The solution was returned anonymously, to no
avail with Bernoulli stating upon receipt “The lion is recognised by his paw”. Further
details of this history and details of these solutions may be found in Goldstine (1980,
chapter A).

The curve giving this shortest time is a segment of a cycloid, which is the curve traced
out by a point fixed on the circumference of a vertical circle rolling, without slipping,
along a straight line. The parametric equations of the cycloid shown in figure 2.3 are

x=a(f—sinf),y=—a(l—cosh),

where a is the radius of the circle: these equations are derived in section 5.2.1, where
other properties of the cycloid are discussed.

Other historically important names are the isochronous curve and the tautochrone. A
tautochrone is a curve such that a particle travelling along it under gravity reaches
a fixed point in a time independent of its starting point; a cycloid is a tautochrone
and a brachistochrone. Isochronal means “equal times” so isochronous curves and
tautochrones are the same.

There are many variations of the brachistochrone problem. Euler? considered the effect
of resistance proportional to v?”, where v is the speed and n an integer. The problem
of a wire with friction, however, was not considered until 1975%. Both these extensions
require the use of Lagrange multipliers and are described in chapter 11. Another
variation was introduced by Lagrange® who allowed the end point, P, in figure 2.3, to
lie on a given surface and this introduces different boundary conditions that the cycloid
needs to satisfy: the simpler variant in which the motion remains in the plane and one
or both end points lie on given curves is treated in chapter 10.

2.5.2 Minimal surface of revolution (E)

Here the problem is to find a curve y(x) passing through two given points P, = (a, A)
and P, = (b, B), with A > 0 and B > 0, as shown in the diagram, such that when
rotated about the z-axis the area of the curved surface formed is a minimum.

The arca of this surface is shown in section 5.3 to be

b
Sly] = 2r / dz y(2) V1T o,

2This anecdote is from the records of Catherine Conduitt, née Barton, Newton’s nicce who acted
as his housekeeper in London, see Newton’s Apple by P Aughton, Weidenfeld and Nicolson, page 201.

3Chapter 3 of his 1744 opus, The Method of Finding Plane Curves that Show Some Property of
Mazimum or Minimum. . ..

4Ashby A, Brittin W E Love, W F and Wyss W, Brachistochrone with Coulomb Friction, Amer J
Physics 43 902-5.

5Fssay on a new method. . ., published in Vol II of the Miscellanea Taurinensai, the memoirs of
the Turin Academy.
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Figure 2.4: Diagram showing the cylindrical shape produced when a curve y(x), joining (a, A) to
(b, B), is rotated about the z-axis.

and we shall see that this problem has solutions that can be expressed in terms of
differentiable functions only for certain combinations of A, B and b — a.

2.5.3 The minimum resistance problem (C)

Newton formulated one of the first problems to involve the ideas of the Calculus of
Variations. Newton’s problem is to determine the shape of a solid of revolution with
the least resistance to its motion along its axis through a stationary fluid.

Newton was interested in the problem of fluid resistance and performed many experi-
ments aimed at determining its dependence on various parameters, such as the velocity
through the fluid. These experiments were described in Book II of Principia (1687)5;
an account of Newton’s ideas is given by Smith (2000)7. It is to Newton that we owe
the idea of the drag coefficient, Cp, a dimensionless number allowing the force on a
body moving through a fluid to be written in the form

1
Fp= §CDpAf1)2, (2.18)

where Ay is the frontal area of the body, p the fluid density,® v = |v| where v is the
relative velocity of the body and the fluid. For modern cars C'p has values between
about 0.30 and 0.45, with frontal arcas of about 30 ft* (about 2.8 m?).

Newton distinguished two types of forces:

a) those imposed on the front of the body which oppose the motion, and

b) those at the back of the body resulting from the disturbance of the fluid and which
may be in either direction.

He also considered two types of fluid:
a) rarefied fluids comprising non-interacting particles spread out in space, such as a
gas, and

b) continuous fluids, comprising particles packed together so that each is in contact
with its neighbours, such as a liquid.

6The full title is Philosophiae Naturalis Principia Mathematica, (Mathematical Principles of Nat-
ural Philosophy).

7"Smith G E Fluid Resistance: Why Did Newton Change His Mind?, in The Foundations of New-
tonian Scholarship.

8Note that this suggests that the 30°C change in temperature between summer and winter changes
Fgr by roughly 10%. The density of dry air is about 1.29 kg m™3.
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The ideas sketched below are most relevant to rarefied fluids and ignore the second type
of force. They were used by Newton in 1687 to derive a functional, equation (2.21)
below, for which the stationary path yields, in theory, a surface of minimum resistance.
This solution does not, however, agree with observation largely because the physical
assumptions made are too simple. Moreover, the functional has no continuously dif-
ferentiable paths that can satisfy the boundary conditions, although stationary paths
with one discontinuity in the derivative exist; but, Weierstrass (1815-1897) showed
that this path does not yield a strong minimum. These details are discussed further in
section 10.6. Nevertheless, the general problem is important and Newton’s approach,
and the subsequent variants, are of historical and mathematical importance: we shall
mention a few of these variants after describing the basic problem.

It is worth noting that the problem of fluid resistance is difficult and was not properly
understood until the early part of the 20th century. In 1752 d’Alembert, (1717-1783),
published a paper, Essay on a New theory of the resistance of Fluids, in which he
derived the partial differential equations describing the motion of an ideal, incompress-
ible inviscid fluid; the solution of these equations showed that the resisting force was
zero, regardless of the shape of the body: this was in contradiction to observations
and was henceforth known as d’Alembert’s paradox. It was not resolved until Prandtl
(1875-1953) developed the theory of boundary layers in 1904. This shows how fluids
of relatively small viscosity, such as water or air, may be treated mathematically by
taking account of friction only in the region where essential, namely in the thin layer
that exists in the neighbourhood of the solid body. This concept was introduced in
1904, but many decades passed before its ramifications were understood: an account of
these ideas can be found in Schlichting (1955)° and a modern account of d’Alembert’s
paradox can be found in Landau and Lifshitz (1959)!°. An effect of the boundary
layer, and also turbulence, is that the drag coefficient, defined in equation (2.18), be-
comes speed dependent; thus for a smooth sphere in air it varies between 0.07 and 0.5,
approximately.

We now return to the main problem, which is to determine a functional for the fluid
resistance. In deriving this it is necessary to make some assumptions about the resis-
tance and this, it transpires, is why the stationary path is not a minimum. The main
result is given by equation (2.21), and you may ignore the derivation if you wish.

It is assumed that the resistance is proportional to the square of the velocity. To see
why, consider a small plane area moving through a fluid comprising many isolated
stationary particles, with density p: the area of the plane is 64 and it is moving with
velocity v along its normal, as seen in the left-hand side of figure 2.5.

In order to derive a simple formula for the force on the area §A it is helpful to imagine
the fluid as comprising many particles, each of mass m and all stationary. If there are
N particles per unit volume, the density is p = mN. In the small time d¢ the area 6 A
sweeps through a volume vdtdA so NvdtdA particles collide with the area, as shown
schematically on the left-hand side of figure 2.5.

For an clastic collision between a very large mass (that of which §A is the small surface
element) with velocity v, and a small initially stationary mass, m, the momentum
change of the light particle is 2mv — you may check this by doing exercise 2.23,
although this is not part of the module. Thus in a time ¢ the total momentum

9Schlichting H Boundary Layer Theory, McGraw-Hill.
10Landau L D and Lifshitz E M Fluid mechanics, Pergamon.
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vot

Figure 2.5: Diagram showing the motion of a small area, 64, through a rarefied gas. On the left-
hand side the normal to the area is perpendicular to the relative velocity; on the right-hand side the
area is at an angle. The direction of the arrows is in the direction of the gas velocity relative to the
area.

transfer is in the opposite direction to v,AP = (2mwv) x (NvdtdA). Newton’s law
equates force with the rate of change of momentum, so the force on the area opposing
the motion is, since p = mN,

op = AP _ 20028 A. (2.19)

ot

Equation (2.19) is a justification for the v?-law. If the normal, ON, to the area JA is
at an angle ¥ to the velocity, as in the right-hand side of figure 2.5, where the arrows
denote the fluid velocity relative to the body, then the formula (2.19) is modified in
two ways. First, the significant area is the projection of A onto v, so dA — J A cos .
Second, the fluid particles are elastically scattered through an angle 24 (because the
angle of incidence equals the angle of reflection), so the momentum transfer along the
direction of travel is v(1 + cos2t) = 2vcos?9: hence 2v — 2vcos? 1, and the force
in the direction (—v) is §F = 2pv? cos® 1)§A. We now apply this formula to find the
force on a surface of revolution. We define Oy to be the axis: consider a segment C'D
of the curve in the Ozy-plane, with normal PN at an angle ¢ to Oy, as shown in the
left-hand panel of figure 2.6.

A~ N
c Y
T~
PND
dX
X
0 >

Figure 2.6: Diagram showing change in velocity of a particle colliding with the element C'D, on the
left, and the whole curve which is rotated about the y-axis, on the right.

The force on the ring formed by rotating the segment CD about Oy is, because of axial
symmetry, in the y-direction. The area of the ring is 2wxds, where s is the length of
the element C'D, so the magnitude of the force opposing the motion is

0F = 2mzds (2p1}2 cos® 1/1) .
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The total force on the curve in figure 2.6 is obtained by integrating from x = 0 to
x = b, and is given by the functional,

r=b
Fly] = 4mpv? /—o ds zcos®1p, y(0)=A, y(b)=0. (2.20)

But dy/dz = tan and cos ) = dx/ds, so that

Fly] ’ x
— = dr ——, y(0)=A, y()=0. 2.21
= e w0 = w0 (221)
For a disc of area Ay, y/(r) = 0, and this reduces to F = 2A;pv?, giving a drag
coefficient Cp = 4, which compares with the measured value of about 1.3. Newton’s
problem is to find the path making this functional a minimum and this is solved in
section 10.6.

Exercise 2.12 (O) Use the definition of the drag coefficient, equation (2.18), to show
that, according to the theory described here,

g b x
Cp=—= dr ——.
b b2/0 l‘1+y,2

Show that for a sphere, where 22 + y? = b? this gives Cp = 2. The experimental value
of the drag coefficient for the motion of a sphere in air varies between 0.07 and 0.5,
depending on its speed. O

Variations of this problem were considered by Newton: one is the curve C'BD, shown
in figure 2.7, rotated about Oy.

D «x
A .
>

0 a b

Figure 2.7: Diagram showing the modified geometry considered by Newton. Here the variable a is
an unknown, the line C'B is parallel to the z-axis and the coordinates of C' are (0, A).

In this problem the position D is fixed, but the position of B is not; it is merely
constrained to be on the line y = A, parallel to Ox. The resisting force is now given
by the functional

Fl [y] 1 2 /b X
T2 1142 =A = 0. 2.22
47T[)’U2 2 a” + a dI 1 + y/2 ? U(a) ) U(b) O ( )

Now the path y(z) and the number a are to be chosen to make the functional stationary.

Problems such as this, where the position of one (or both) of the end points are also
to be determined, are known as wariable end point problems and are dealt with in
chapter 10.
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2.5.4 A problem in navigation (O)

Given a river with straight, parallel banks a distance b ¥
apart and a boat that can travel with constant speed
¢ in still water, the problem is to cross the river in the
shortest time, starting and landing at given points.

v(x)

yx)
If the y-axis is chosen to be the left bank, the starting

point to be the origin, O, and the water is assumed to be
moving parallel to the banks with speed v(z), a known O
function of the distance from the left-hand bank, then

the time of passage along the path y(z) is, assuming

¢ > max(v(x)),

=
Sle— >

2 —wv(x)? ’

Tl - / o VE YD =0l — u(e)y
Yy

y(0 (b) = B,

where the final destination is a distance B along the right-hand bank. The derivation of
this result is set in exercise 2.22, one of the harder exercises at the end of this chapter.

A variation of this problem is obtained by not defining the terminus, so there is only
one boundary condition, y(0) = 0, and then we need to find both the path, y(z) and
the terminal point. It transpires that this is an easier problem and that the path is the
solution of y/(x) = v(x)/c, as is shown in exercise 10.7 (page 222).

2.5.5 The isoperimetric problem (E)

Among all curves, y(z), represented by functions with continuous derivatives, that join
the two points P, and P, in the plane and have given length L[y], determine that which
encompasses the largest area, S[y], shown in diagram 2.8.

y

A P,

L[]

A SIH

X

L
? o

a b

Figure 2.8: Diagram showing the area, S[y], under a curve of given length joining P, to P.

This is a classic problem discussed by Pappus of Alexandria in about 300 AD. Pappus
showed, in Book V of his collection, that of two regular polygons having equal perime-
ters the one with the greater number of sides has the greater area. In the same book
he demonstrates that for a given perimeter the circle has a greater area than does any
regular polygon. This work seems to follow closely the earlier work of Zenodorus (circa
180 BC): extant fragments of his work include a proposition that of all solid figures,
the surface areas of which are equal, the sphere has the greatest volume.
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Returning to figure 2.8, a modern analytic treatment of the problem requires a differ-
entiable function y(z) satisfying y(a) = A, y(b) = B, such that the area,

S[y]=/abdxy

is largest when the length of the curve,

b
L[y]=/ dr /14y,

is given. It transpires that a circular arc is the solution.

This problem differs from the first three because an additional constraint — the length
of the curve — is imposed. We consider this type of problem in chapter 12.

2.5.6 The catenary (E)

A catenary is the shape assumed by an inextensible cable, or chain, of uniform density
hanging between supports at both ends. In figure 2.9 we show an example of such a
curve when the points of support, (—a, A) and (a, A), are at the same height.

y
A

(-a.4) 1,

(a.4)

—a a

Figure 2.9: Diagram showing the catenary formed by a uniform chain hanging between two points
at the same height.

If the lowest point of the chain is taken as the origin, the catenary equation is shown

in section 12.2.3 to be "
y=c (cosh (—) - 1) (2.23)
c

for some constant ¢ determined by the length of the chain and the value of a.

If a curve is described by a differentiable function y(x) it can be shown, see exercise 2.19,
that the potential energy E of the chain is proportional to the functional

Sly] = / dx y\/1+y'2.
The curve that minimises this functional, subject to the length of the chain

a
Lly] = / dx /1 + y'2 remaining constant, is the shape assumed by the hanging chain.

—a
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In common with the previous example, the catenary problem involves a constraint —
again the length of the chain — and is dealt with using the methods described in
chapter 12.

2.5.7 Fermat’s principle (C)

Light and other forms of electromagnetic radiation are wave phenomena. However, in
many common circumstances light may be considered to travel along lines joining the
source to the observer: these lines are named rays and are often straight lines. This is
why most shadows have distinct edges and why eclipses of the Sun are so spectacular.
In a vacuum, and normally in air, these rays are straight lines and the speed of light in
a vacuum is ¢ ~ 3.0 x 10!° cm/sec, independent of its colour. In other uniform media,
for example water, the rays also travel in straight lines, but the speed is different: if
the speed of light in a uniform medium is ¢, then the refractive index is defined to be
the ratio n = ¢/¢,,. The refractive index usually depends on the wave length: thus for
water it is 1.333 for red light (wave length 6.5 x 107> c¢m) and 1.343 for blue light (wave
length 4.5 x 10~® cm); this difference in the refractive index is one cause of rainbows.
In non-uniform media, in which the refractive index depends upon position, light rays
follow curved paths. Mirages are one consequence of a position-dependent refractive
index.

A simple example of the ray description of light is the reflection of light in a plane
mirror. In figure 2.10 the source is S and the light ray is reflected from the mirror at
R to the observer at O. The plane of the mirror is perpendicular to the page and it is
assumed that the plane SRO is in the page.

Figure 2.10: Diagram showing light travelling from a source S to an observer O, via a reflection at
R. The angles of incidence and of reflection are defined to be 61 and 02, respectively.

It is known that light travels in straight lines and is reflected from the mirror at a
point R as shown in the diagram. But without further information the position of R is
unknown. Observations, however, show that the angle of incidence, 61, and the angle
of reflection, 62, are equal. This law of reflection was known to Euclid (circa 300 BC)
and Aristotle (384-322 BC); but it was Hero of Alexandria (circa 125 BC) who showed
by geometric argument that the equality of the angles of incidence and reflection is a
consequence of the Aristotelean principle that nature does nothing the hard way; that
is, if light is to travel from the source S to the observer O via a reflection in the mirror
then it travels along the shortest path.

This result was generalised by the French mathematician Fermat (1601-1665) into what
is now known as Fermat’s principle which states that the path taken by light rays is
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that which minimises the time of passage'’. For the mirror, because the speed along
SR and RO is the same this means that the distance along SR plus RO is a minimum.
If AB = d and AR = x, the total distance travelled by the light ray depends only upon
x and is

Fe) = o2 + 13 1/ (d—2) + 12,

This function has a minimum when 6; = 65, that is when the angle of incidence, 61,
equals the angle of reflection, 5, see exercise 2.14.

In general, for light moving in the Ozy-plane, in a medium with refractive index n(z, y),
with the source at the origin and observer at (a, A) the time of passage, T, along an
arbitrary path y(z) joining these points is

T[y]ZE/Oadwn(x,y)\/ler’z, y(0) =0, y(a) = A.

This follows because the time taken to travel along an element of length ds is n(z, y)ds/c
and ds = /1 + y/(x)?0x. If the refractive index, n(z,y), is constant then this integral
reduces to the integral (2.1) and the path of a ray is a straight line, as would be
expected.

Fermat’s principle can be used to show that for light reflected at a mirror the angle of
incidence equals the angle of reflection. For light crossing the boundary between two
media it gives Snell’s law,

sin (651 _ C1

sinos  cy’

where a7 and as are the angles between the ray and the normal to the boundary and ¢y,
is the speed of light in the media, as shown in figure 2.11: in water the speed of light is
approximately co = ¢1/1.3, where ¢; is the speed of light in air, so 1.3 sinay = sina;.

Figure 2.11: Diagram showing the refraction of light at the surface of water. The angles of incidence
and refraction are defined to be a2 and a; respectively; these are connected by Snell’s law.

In figure 2.11 the observer at O sees an object S in a pond and the light ray from S
to O travels along the two straight lines SN and NO, but the observer perceives the
object to be at S’, on the straight line OS’. This explains why a stick put partly into
water appears bent.

1l Fermat’s original statement was that light travelling between two points seeks a path such that the
number of waves is equal, as a first approximation, to that in a neighbouring path. This formulation
has the form of a variational principle, which is remarkable because Fermat announced this result in
1658, before the calculus of either Newton or Leibniz was developed.
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2.5.8 Coordinate free formulation of Newton’s equations (C)

Newton’s laws of motion accurately describe a significant portion of the physical world,
from the motion of large molecules to the motion of galaxies. However, Newton’s
original formulation is usually difficult to apply to even quite simple mechanical systems
and hides the mathematical structure of the equations of motion, which is important
for the advanced developments in dynamics and for finding approximate solutions. It
transpires that in many important circumstances Newton’s equations of motion can be
expressed as a variational principle the solution of which is the equations of motion.
This reformulation took some years to accomplish and was originally motivated partly
by Snell’s law and Fermat’s principle, that minimises the time of passage, and partly
by the ancient philosophical belief in the “Economy of Nature”; for a brief overview of
these ideas the introduction of the book by Yourgrau and Mandelstam (1968) should
be consulted.

The first variational principle for dynamics was formulated in 1744 by Maupertuis
(1698-1759), but in the same year FEuler (1707-1783) described the same principle
more precisely. In 1760 Lagrange (1736—1813) clarified these ideas, by first reformulat-
ing Newton’s equations of motion into a form now known as Lagrange’s equations of
motion: these are equivalent to Newton’s equations but easier to use because the form
of the equations is independent of the coordinate system used — this basic property
of variational principles is discussed in chapter 6 — and this allows easier use of more
general coordinate systems.

The next major step was taken by Hamilton (1805-1865), in 1834, who cast Lagrange’s
equations as a variational principle; confusingly, we now name this Lagrange’s varia-
tional principle. Hamilton also generalised this theory to lay the foundations for the
development of modern physics that occurred in the early part of the 20th century.
These developments are important because they provide a coordinate-free formulation
of dynamics which emphasises the underlying mathematical structure of the equations
of motion, which is important in helping to understand how solutions behave.

Summary

These few examples provide some idea of the significance of variational principles. In
summary, they are important for three distinct reasons

e A variational principle is often the easiest or the only method of formulating a
problem.

e Often conventional boundary value problems may be re-formulated in terms of a
variational principle which provides a powerful tool for approximating solutions.

This technique is introduced in chapter 13.

e A variational formulation provides a coordinate free method of expressing the laws
of dynamics, allowing powerful analytic techniques to be used in ordinary Newtonian
dynamics. The use of variational principles also paved the way for the formulation
of dynamical laws describing motion of objects moving at speeds close to that of light
(special relativity), particles interacting through gravitational forces (general relativity)
and the laws of the microscopic world (quantum mechanics).
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2.6 Miscellaneous exercises

Exercise 2.13 (O) Functionals do not need to have the particular form considered in
this chapter. The following expressions also map functions to real numbers:

(a) Dyl =y'(1) +y(1)%

(b) K[y = / d a(a)y(x) + (L)' (@)

1
(¢) Lly] = [:zry(x)y’(x)](l) +/0 dz [a(z)y (z) + b(x)y(z)], where a(z) and b(z) are

prescribed functions;

(@) S[y] = / s / dt (2 + styy(s)u(t).

Find the values of these functionals for the functions y(z) = z? and y(z) = cosmx
when a(x) = z and b(z) = 1. O

Exercise 2.14 (O) Show that the function

flz) = \/x2 +h2 + \/(d—x)2 + hZ,

where hi, ho are defined in figure 2.10 (page 36) and x and d denote the lengths AR
and AB respectively, is stationary when 6, = 65 where

. z . d—z
sinfh) = ———, sinfy= ——or.
Va2 +hi V(d—2z)?+h3
Show that at this stationary value f(z) has a minimum. O

Exercise 2.15 (E) Consider the functional

S[y]z/odxy’\/l—ky’, y(0)=0, y(1)=B>-1.

(a) Show that the stationary function is the straight line y(z) = Bz and that the
value of the functional on this line is S[y] = Bv1 + B.

(b) By expanding the integrand of S[y + €h] to second order in €, show that

443B) [*
Sy +eh] = S[y] + (+—);/2 / dz W' (z)?, B> —1,
8(1+B)"" Jo
and deduce that on this path the functional has a minimum. O

Exercise 2.16 (E) Using the method described in the text, show that the functionals

b b
Sily] = / de (1+xy)y’ and Ssly] = / da xy'?,
a a
where b > a > 0, y(b) = B and y(a) = A are both stationary on the same curve,

namely
y(x) = A+ (B — A) —111; ((Z;Z))

Explain why the same function makes both functionals stationary. O
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Exercise 2.17 (O) In this exercise the theory developed in section 2.3.1 is extended.
The function F(z) has a continuous second derivative and the functional S is defined
by the integral

b
Sly] =/ dz F (y).
(a) Show that

S [y + eh] — —e/ dx—h’ +— /dar:d/2 )2+ 0 (%),

where h(a) = h(b) =
(b) Show that if y(z) is chosen to make dF/dy’ constant then the functional is sta-
tionary.

(¢) Deduce that this stationary path makes the functional either a maximum or a
minimum, provided F”(y’) # 0. a

Exercise 2.18 (E) Show that the functional

St = [ e (L5 @?) w0 =0 (1) =B >0,

is stationary for the straight line y(z) = Buz.

In addition, show that this straight line gives a minimum value of the functional only
if B< \/5, otherwise it gives a maximum. O

Harder exercises

Exercise 2.19 (O) If a uniform, flexible, inextensible chain of length L is suspended
between two supports having the coordinates (a, A) and (b, B), with the y-axis pointing
vertically upwards, show that, if the shape assumed by the chain is described by the
differentiable function y(x), then its length is given by L f dx /1 + y'? and its
potential energy by

H—gp/dxy\/Hy’?, y(a) = A, y(b) =B,

where p is the line-density of the chain and g the acceleration due to gravity. ]

Exercise 2.20 (E) This question is about the shortest distance between two points
on the surface of a right-circular cylinder, so is a generalisation of the theory developed
in section 2.2.

a) If the cylinder axis coincides with the z-axis we may use the polar coordinates
Y y
(p, 9, 2) to label points on the cylindrical surface, where p is the cylinder radius.
Show that the Cartesian coordinates of a point (x,y) are given by © = pcos ¢,y =
psin ¢ and hence that the distance between two adjacent points on the cylinder,
(p, ¢, z) and (p, + 8¢,z + 6z) is, to first order, given by 6s? = p?0¢? + §22.

(b) A curve on the surface may be defined by prescribing z as a function of ¢. Show
that the length of a curve from ¢ = ¢ to ¢ is

P2
Lz :/ do~/p? + 2/ (4)2.
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(¢) Deduce that the shortest distance on the cylinder between the two points (p, 0,0)
and (p, «, ¢) is along the curve z = (¢/a. ]

Exercise 2.21 (E) An inverted cone has its apex at the origin and axis along the
z-axis. Let a be the angle between this axis and the sides of the cone, and define a
point on the conical surface by the coordinates (p,¢), where p is the perpendicular
distance to the z-axis and ¢ is the polar angle measured from the z-axis.

Show that the distance on the cone between adjacent points (p, ¢) and (p+ dp, ¢+ d¢)
is, to first order,
5p?

sin® o

5s% = p25¢2 +

Hence show that if p(¢), ¢1 < ¢ < ¢, is a curve on the conical surface then its length

' o2 p/2
L= [ do o+ Lp. 0
. sin” o

Exercise 2.22 (0O) A straight river of uniform width b flows with velocity (0,v(x)),
where the axes are chosen so the left-hand bank is the y-axis and where v(z) > 0.
A boat can travel with constant speed ¢ > max(v(x)) relative to still water. If the
starting and landing points are chosen to be the origin and (b, B), respectively, show
that the path giving the shortest time of crossing is given by minimising the functional

b 2 "(2)2) —v(x)2 —v(z)y (o
iy = [ an YLV g2, =, o

Exercise 2.23 (O) In this exercise the basic dynamics required for the derivation
of the minimum resistance functional, equation (2.21), is derived. This exercise is
optional, because it requires knowledge of elementary mechanics which is not part of,
or a prerequisite of, this module.

Consider a block of mass M sliding smoothly on a plane, the cross section of which is
shown in figure 2.12.

— ——— > 1’ After collision
—> 7 vV ———— Before collision
M o
m

Figure 2.12: Diagram showing the velocities of the block and particle before and after the collision.

The block is moving from left to right, with speed V', towards a small particle of mass
m moving with speed v, such that initially the distance between the particle and the
block is decreasing. Suppose that after the inevitable collision the block is moving with
speed V', in the same direction, and the particle is moving with speed v to the right.
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Use conservation of energy and linear momentum to show that (V') are related to
(V,v) by the equations

MV?2 4+ mv? = MV? +mv? and MV —mv = MV’ +muv'.
Hence show that

2m , _ 2MV + (M —m)v

Iy ,
V=V M+m(V—|—b) and N tm

Show that in the limit m/M — 0, V/ = V and v = 2V + v and give a physical
interpretation of these equations. O
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B.1 Solutions for chapter 2

Solution to Exercise 2.1

To find the stationary function we need to compute the difference §S = Sy + eh] —
STy] to O(e) but, because exercise 2.3 requires the second-order term, we evaluate the
difference to O(e?). The difference is

where h(0) = h(1) = 0. But

wu%)W7

1+y(x

3 , eh'(z) e/ KW \°
= V1+y'(z) <1+—2(1+y,(x)) _§<—1+y’(x)) +>

2

VITT@ T @) = VT ) (1 T

1 1
where we have used the binomial expansion (1 + z)1/2 =1+ 3757 e which is

8
1/2

equivalent to using the Taylor series for (1 + z)'/. Hence

et W) &t W (z)? &3
B3 b O

The functional is stationary if the first-order term is zero for all h(z), otherwise 65
would change sign with e. Using the result quoted in the text (after equation (2.5))
— and proved in exercise 4.4 (page 94) — this gives /1 + y/(z) = constant, that is
y'(x) = constant and y(x) = ax + S. The boundary conditions then give y = Bz for
the stationary path. With this value for y(z), the integrand is real if B > —1 and has

the value S = /1 + B.

Solution to Exercise 2.2

(a) The required expansion is given by first writing the square root as

2eaf 232 \ 2
1+a2 14 a2

V1+ a2 +2caf + 262 = 1+ a? (1+

1 1
Now use the binomial expansion (1 + 2)Y/2 =1+ 3%~ —2% 4 ... to give

3
2 232 1/ 2l 232 1/ 92 232 \ 2
\/1+ 601/3 +i=1+_ 60(;3 +i - — 6015 +i + ...
1+a2 1402 2\1+a?2 1+a? 8\1+a?2 1+a2
eap €232 .
=1+ 5+ 0 ().

+
L+a?  2(1+a2)

Hence

2102
1+(o<+e,8)2:\/1+042+\/%—&-2(1162)3/24—0(63).
«
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(b) With a = y/(z) and 8 = h/(x) we see, using the argument described in the text,
that the term O(e) in the expansion of S[y + eh] — S[y] is zero if y'(x) =constant,
hence the straight line defined by equation (2.6) makes the functional stationary.
With this choice of y(z), @ = m and the second term in the above expansion gives
the result quoted. The second-order term is positive for € # 0 and all h(z), so the
functional has a minimum along this line.

Solution to Exercise 2.3

The expansion to second-order in € is derived in the solution to exercise 2.1. On the
stationary path, y = Bz, the first-order term is, by definition, zero, so we have

62

1
58 = 3/2/0 dr h'(r)*> <0, B> —1.

8(1+ B)
Because this term is always negative, for sufficiently small |e| we have S[ys+eh] < S[ys],
where ys(x) = Bz is the stationary path, which is therefore a local maximum.

Solution to Exercise 2.4

If ay = by =1, ap = z and by = z+u the three parts of the Cauchy—Schwarz inequality
(page 378) are

2

2 2
Zai:l—i—zQ, Zbi:1+(z+u)2, Zakbkzl—i-zz—i—zu,
k=1 k=1 k=1

and the first result follows. There is equality only if a = b, that is v = 0. Divide the
first inequality by /1 + 22 to derive the second result.

Solution to Exercise 2.5
(a) If F(y') = (1 +y*)Y* then dF/dy’ =y /[2(1 + y'2)?/4].
(b) If F(y'") = siny’ then dF/dy’ = cosy’.

d ,
(¢) Since d—(ez) = e* we have dF'/dy’ = F.
2

Solution to Exercise 2.6

Consider the difference
b
55 = Sly+ <] = Slyl = [ du [C(y/+ k) + D~ (CY +D)

b
:Ec/(mmugzdmmm—hm»

Since h(a) = h(b) = 0,05 = 0 for any y(z). That is, there is no unique stationary
path.

Alternatively, in this case the functional becomes

b
ﬂm:/dw@W@HJMZCMM—MM+D@—@-
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This depends only upon C, D and the boundaries a and b: the value of the functional
is therefore independent of the chosen path.

If C and D depend upon z then
b
88 = e/ dx C(z)h' (z).

The same theory that leads to equation (2.12) shows that §S = 0 for all h(z) if and
only if C(x) = constant, which is the case considered first. When C is not a constant
there are no stationary paths.

Solution to Exercise 2.7

In this example F(z,v) = v/1+ z + v? and equation (2.16) becomes

v=cV1+z+v? where v=1y'(z).

Squaring and rearranging this equation gives

dy 2 9 9 ?
(a) oo, =975

Integrating this gives the solution in the form
N v N 2a 3/2
ylx)—A=a dx\/l—&-x—g (14+2)""—1).
0

The value of a is obtained from the boundary condition y(1) = B, that is

2 B—-A (B—A) 3/2
§a = and hence y(z)=A+ m ((1 +2)7" — 1) .

Solution to Exercise 2.8

If F(x,y") = /22 4+ y'2, F is independent of y, we have

F F g !
9 =0 8———1: and 0—— Y

y O dx Va? 4y Ny
giving
dF OF OF , OF , x4y

dx 69:+6yy+8_y’y Ny

Since F' does not depend explicitly upon y, we have

d (8F> _9F ,  PF

dz \ oy Oy'? Y Ox0y’

and

0*F xy’ 0*F 1 y'? x2

D20y’ = _(x2—|—y’2)3/2’ Iy’ = (22 + y2)1/2 - (22 + 232~ (22 + y?)3/2
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which gives

d (oF aty” ay  w(wy —y) 2Py /)
oy’

dx (22 +y’2)3/2 B (22 +y’2)3/2 - (22 +y/2)3/2 (22 +y’2)3/2
Also
9 (dF> _ Yy (z+yy")y _ z(xy” —y)
Ay’ \ dx VE2+y? (a2 + y/2)3/2 (22 + y’2)3/2

so, in this case d (oF = 0 (dF
’ Tdx \0y' ) Oy \dz )

Solution to Exercise 2.9
The chain rule applied to a function G(z,y(z),y'(x)) has the form
1 _dGay | 9Gdy G
de Oy dx  Oydr Oz’
In this example, where G = 9F/0y’, this expression becomes
A (OF\ _ 0 (PN dy 9 (0F\dy 0 (0F
de \oy' ) 0y \oy ) de 0y \0y' ) dr Oz \ oy
_ 9*F , N 0*F - 0*F
N 8y’2y 8y’8yy Oxdy’

which gives the required expression and is the left-hand side of the inequality.

The right-hand side of the inequality is

i d_F — i a_F + a_Fq ! 4 a_F7 "
oy \dz ) oy \ox Oy Y oy’ y
0’r  9F  0°F , O0°F ,

oxdy’ * a_y + 8y8y’y + 8y’2y

which differs from the left-hand side by the term 0F/0y. Thus, only if F is independent
of y are the derivatives equal.

Solution to Exercise 2.10

Subtract the term dF /0y to obtain the required result.

Solution to Exercise 2.11

OF OF !
(a) Direct differentiation gives — = /1+y2, —— = . — Differentiating the
dy a1+ y?

second expression gives

PF yy” y

y’? - \/W B (1 +y/2)3/2 a (1+y/2)3/2

Using the expression derived in exercise 2.10, namely

_d (ory _or "82F+ ) OF _8_F_0 since 0°F =0
oy’ Ay Y Oy'? Y oyoy' oy oxdy’

Z_da:
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we obtain
_ yy" y'? 12
S RV T SR Y (T+y7)7",
1 2 2 212 1 9
= ArEpn W+ ) = (%)) = s ' =y - 1),

hence the equation z = 0 becomes yy” — 1 — 4’2 = 0. But

d Z// y// y/Q o d y’ .
. <§> :?_F giving yy”—y’szQ% Z , if y#£0,

d(oFN _oF 1 [(ad (V)
aw\ay) "y~ (112 U e \y '

(b) If the left-hand side is zero we have

d (v d (v
2_ g =1 2/_ g =1
yd$<y> Iy \y

Now define z = y’/y and consider z to be a function of y, so in the following 2z’ =
dz/dy — note this is possible because x may be considered a function of y so y'/y
can be expressed in terms of . Now put the second equation in the form y322'(y) =

1, which can be integrated directly to give z? = C? — y~2, for some constant C.
_ dy . ' dy
Hence, since z = ' /y, — = 1/ (Cy)2 — 1 givin —_—
vy (Cy) giving Gy 1
set C'y = cosh ¢ to give ¢ = C(x + D), that is y = (1/C) cosh(Cz + CD), which
is the required solution, if C' = A and CD = B.

and hence

=1z + D. Finally,

Solution to Exercise 2.12

The first result follows directly by replacing F[y], in equation (2.21), by Fgr from
equation (2.18). Putting z = bcos# and y = bsinf in the integral we obtain,

/2
Cp = 8/ df sin® 0 cos = 2.
0

Solution to Exercise 2.13
(a) The expressions for y(x), y'(z) and D[y] are
y(z)  y'(x)  Dlyl

z2 2 3
cosmTx —msinmwr 1

(b) If a(z) = x, then

! 11
if y(z) =2%, Kly] = / dx x(x? + 2x) = T and
0
1

2
if y(z) = cosmz, K[y]:/ dx x (cosmr + msinmr) =1— —
0 s
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(¢) If a(z) = z and b(xz) =1 then

1
if y(x)=2% L[y =223 +/ dr (37%) =3 and
0

1

1
it y(x)=cosmx, Lly]= [—g.l, sin 27rx} +/ dx (—mxsinma 4 cosma) = —1.
0

0

(d) In the first case, y(x) = 22,
1
1

y(
1 1 ) .
S [a?] = / ds/ dt (s*+ st) 52t2:/ ds {—841534——53164}
0 0 0 3 4 _
1 1 31
= [ ds (G5t ost) = o
/o ’ (35 +4s> 210
In the second case, y(x) = cosnz,

1 1
S [cosTa] = / ds cos 7TS/ dt (s® + st) cosmt
0 0

1 2 1
s° . t . 1
ds cosms |—sinnwt + s | —sinnwt + —5 cos it
0 s s T 0

2 [t 4
-= ds scosms = —
T 0 v

Solution to Exercise 2.14

The derivative of f(z) is f'(z) = z/\/2%2 + h3 — (d — z)//(d — ) + hZ. Since
AR T RB d—z

sinf) = — = ————= and sinfh = — =

SR \[a? 113 RO Jd—o)+ 12

where the distances are defined in figure 2.10 (page 36), we see that the distance
travelled by the light is stationary when sin #; = sin 5, that is 8; = 6. Further since
h? h3
f(x) = T : >0,
T /2 3/2
(22 + 1) ((d — )2+ hg)

the stationary point is a minimum.

Solution to Exercise 2.15

(a) We need the difference 65 = S|y + eh] — S[y] where h(0) = h(1) = 0, otherwise
h(z) is an arbitrary continuous function. Now, using the Binomial expansion

- 65 62}32 3
\/1+a+6ﬂ—\/1+a<1+2(1+a) _8(1+a)2+0(6 )>,
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and so

B B
(a+ef)V/1+a+es= a\/1+a<1+ (1+a)_8(1+a)2+“'>

+€6\/1+—a<1+ (lf— )+...>,

eB(2+3a)  €B%(4+ 30)
= aVlta+ + +
o] "Wita 1+a)3/2

Now substitute a = ¢’ and 8 = h’ to obtain

2+3y / 4+3y 3
0S = dx de ————=h O .
6/ O Gy o)

If y(x) is a stationary path of S then the term O(e) is zero. Since h(0) = h(1) =
follows, as in the text, that y’(z) = constant is a possible solution. Since y(0)
and y(1) = B this gives y(z) = Bz and S[y] = BV1 + B.
Alternatively, using equation (2.12) (page 24), with F'(y') = v'/1 + ¢/, we see that
the stationary path is given by F’(y’) = constant and hence y’ = constant, that is
y = ma + ¢: since y(0) = 0 and y(1) = B this gives y(x) = Bax.

(b) On substituting Bx for y(z) we see that §.5 takes the value,

0

55— —(4F35) /d W (2)?+ 0 ().

1+BS/2

Then, provided B > —1, 45 is positive and the functional is a minimum on the
stationary path.

Solution to Exercise 2.16
Observe that .
Suli) = Seli] + [ doy/(a) = Saly) + B - A
a

That is the values of the two functionals differ by a constant, independent of the path.
Hence the stationary paths of the two functionals are the same.

Consider the difference 65 = Sa[y + €h] — S2[y] where h(a) = h(b) = 0:

5S = 2 /b dz zy (z)l (z) + O (€%)

so that 85 = O(€?) if zy/(z) = ¢, where c is a constant. Integrating this equation gives
y(x) = d+ cln(a/a), where d is another constant. The boundary conditions now give

In (/a)
In (b/a)’

A=d and B=d+cln(b/a) andhence y(zr)=A+ (B— A)
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Solution to Exercise 2.17

(a) Consider the difference 65 = S[y + eh] — S[y] where h(a) = h(b) = 0, so we need
the expansion

dF 15, ,d°F

F(y +eh) = F o)+ e+ 50 3

Hence

b dF
6S:€/ded—y/ —|—— /d d/2 —I—O()

(b) If dF/dy’ = constant then §S = O(€?) so S[y] is stationary. If dF/dy’ = constant
then, provided F(z) is not a constant or a linear function of z, y'(z) is also a
constant.

(c) On the stationary path y(z) is a constant and hence d?F/dy'? is constant and

2
08 = 2 &°F

b
/ dz h'(2)> + O (€).
a
The integral is positive, so 6.9 is positive or negative according as d?F/dy'? is
positive or negative. That is S[y| is either a minimum (d>F/dy’? > 0) or a max-
imum (d?F/dy"? < 0). If d>F/dy’? = 0 the nature of the stationary path can be
determined only by expanding to higher-order in e.

1
2°

Solution to Exercise 2.18

In this example F(z) = (1 + 22)1/ 4 where we have used the notation of the previous
exercise. Thus )
z 2—2z
_ F”(Z) - - =
2 (1 + 22)3/4 4(1+ 227"

and hence the stationary path is y = Bz, B > 0, and

F'(z) =

_p2y.2 1
(2 B):/4/ dz W (z)? 40 (€%).
0

Sy+eh] — Sy = W

Thus if B < /2 the difference is positive for all h(z) and e, if sufficiently small, so
the functional is a minimum along the line f(z) = Bx. For B > /2 the difference is
negative and the functional is a maximum. If B = /2 the nature of the stationary
path can be determined only by expanding to higher-order in e.

Solution to Exercise 2.19

The potential energy, 5V, of an element of the rope of length ds centred on a point z is
given by mass X height x g, that is 6V = (pés) (x)g: since ds = /1 + y’2(5m this gives

the total potential energy as E[y] = pg/ dr yv/1+ y? and L[y] = / rv14+y?is

the length of the chain.
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Solution to Exercise 2.20
(a) Since, to first-order, dx = —pdPsin ¢ and dy = pde cos ¢, the distance is

2

(b) The length along a curve is just the sum of the small elements which in the limit

d¢ — 0 becomes the integral L[z / do/ p? + 2/(

1
(¢) The functional L[z] is the same type as that considered in section 2.3.1 hence
its minimum value is given when z(¢) is a linear function of ¢. The boundary
conditions give the result quoted.

Solution to Exercise 2.21

The Cartesian coordinates of a point (p, ¢) on the cone are

(z,y,2) = (pcosqﬁ,p%maﬁ tana)

and for the adjacent point at (p + dp, d + d¢), or (z + dz,y + dy, z + dz) in Cartesian
coordinates, we have, to first-order

op
tan «

dx =dpcosp — pdpsing, Jy = dpsing + pdpcosd, Iz =

The distance between the two adjacent points is therefore

1 5p? 1 d
6 =1+ 8p% + p26¢% = p —+ p260% = | p* + 9P ) sg2.
tan? sin? sina \ 69
Hence the distance between the points ¢; and ¢o along the curve p(¢) is Llp] =

2
/ dpr/ p? + p2sin™? a.
1

Solution to Exercise 2.22

Let the velocity of the boat relative to the water be (uq,uy), where ¢ = u2 + u?, and

we assume that u, is positive. The velocity of the boat relative to land is therefore
(uz,v(x) + uy). If the path taken is y(x) it follows that
dy

dy uy,+v
—~ = —=—— and hence wu, =u,—— —v.
dx Uy Y “dx

"¢ dx
Ty = [ 5
0o Uz

2

Also, the time of passage is

Now we need an expression for u,. Since ¢ = u2 + u? 4» We have, on using the above
2 2

expression for u,, (y'(z)u, —v)? = ¢ —u2. This rearranges to the quadratic

(1 + ylz) “i —2vy Uy — ((32 - 1)2) =0,
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having the solutions

vy £/ (o) + (2 — 0?) (1 +y7)
1+y?

Uy =

Because ¢ > v this quadratic has one positive and one negative root. We need the
positive root:

vy + /0y + (¢ — 0?) (1 + ) 22
Uz = 12 =
b Vy) + (@ =v) (1 +y) — vy
Hence
¢ (vy')? + (2 —v?) (1 +y?) — vy L VA +y?)e —o? —vy'
[y]_/odx\/ 2 _ 2 c2 —p?

Solution to Exercise 2.23

1
The kinetic energy of a particle of mass m and velocity v is §m|v|2 and its linear

momentum is mv. For an elastic collision energy and momentum are conserved, so

MV? +mv* = MV"? + mv?  Energy conservation

MV —mv=MV'+mv Linear momentum in the direction of the block motion
From the second equation v’ = M(V — V')/m — v, so conservation of energy gives
MV"? = MV? +mv? — m(v — M(V = V') /m)?
M2
=MV2+2MU(V—V)—W(V V2.
But V2 =(V - V"2 -2V(V — V') + V2 and hence
M 72 /
M 1+E V-V -2MV+v)(V-V)=0

with solutions V/ =V and

2
V=V - MTm(V+1))—>V as %—H).
The solution V' = V gives, from the momentum equation, v = —v, which is for the

motion of the particle through the block and we discard this solution. The equation
for v’ is
2M 2MV + (M —m)v
= — =
T hem Y M+m

m
— 2V s — — 0.
s M

When m/M is zero the solutions correspond to the elastic collision of a massless particle
from a massive body when the relative velocity before and after the collision is the
same.



