## Unit 5 Coordinate geometry and vectors

## Solution to Activity 23

(a) The vector $\mathbf{f}$ is equal to the vector $\mathbf{a}$.
(b) The vector $\mathbf{d}$ is equal to the vector $\overrightarrow{P Q}$.

## Solution to Activity 24



## Solution to Activity 25



## Solution to Activity 26



## Solution to Activity 27

(a) The velocity of a wind of 70 knots blowing from the north-east is represented by $2 \mathbf{v}$.
(b) The velocity of a wind of 35 knots blowing from the south-west is represented by $-\mathbf{v}$.

## Solution to Activity 28

(a) $4(\mathbf{a}-\mathbf{c})+3(\mathbf{c}-\mathbf{b})+2(2 \mathbf{a}-\mathbf{b}-3 \mathbf{c})$

$$
=4 \mathbf{a}-4 \mathbf{c}+3 \mathbf{c}-3 \mathbf{b}+4 \mathbf{a}-2 \mathbf{b}-6 \mathbf{c}
$$

$$
=8 \mathbf{a}-5 \mathbf{b}-7 \mathbf{c}
$$

(b) (i) $4 \mathbf{x}=7 \mathbf{a}-2 \mathbf{b}$

$$
\mathbf{x}=\frac{7}{4} \mathbf{a}-\frac{1}{2} \mathbf{b}
$$

(ii) $\quad 5 \mathbf{x}=2(\mathbf{a}-\mathbf{b})-3(\mathbf{b}-\mathbf{a})$

$$
\begin{aligned}
& =2(\mathbf{a}-\mathbf{b})+3(\mathbf{a}-\mathbf{b}) \\
& =5(\mathbf{a}-\mathbf{b}) \\
\mathbf{x} & =\mathbf{a}-\mathbf{b}
\end{aligned}
$$

## Solution to Activity 29

(a) The bearing of $\mathbf{a}$ is $45^{\circ}$, the bearing of $\mathbf{b}$ is $315^{\circ}$, and the bearing of $\mathbf{c}$ is $225^{\circ}$, as shown below.

(b)


## Solution to Activity 30

Represent the first part of the motion by the vector $\mathbf{a}$, and the second part by the vector $\mathbf{b}$. Then the resultant displacement is $\mathbf{a}+\mathbf{b}$.


Since $\mathbf{a}$ and $\mathbf{b}$ are perpendicular, and $|\mathbf{a}|=5.3 \mathrm{~km}$ and $|\mathbf{b}|=2.1 \mathrm{~km}$,

$$
\begin{aligned}
|\mathbf{a}+\mathbf{b}| & =\sqrt{|\mathbf{a}|^{2}+|\mathbf{b}|^{2}} \\
& =\sqrt{5.3^{2}+2.1^{2}}=\sqrt{32.5} \\
& =5.70 \ldots \mathrm{~km}
\end{aligned}
$$

The angle marked $\theta$ is given by

$$
\tan \theta=\frac{|\mathbf{b}|}{|\mathbf{a}|}=\frac{2.1}{5.3},
$$

SO
$\theta=\tan ^{-1}\left(\frac{2.1}{5.3}\right)=22^{\circ}$ (to the nearest degree).
So the bearing of $\mathbf{a}+\mathbf{b}$ is $60^{\circ}+22^{\circ}=82^{\circ}$ (to the nearest degree).
The resultant displacement of the yacht has magnitude 5.7 km (to $1 \mathrm{~d} . \mathrm{p}$.) and bearing $82^{\circ}$ (to the nearest degree).

## Solution to Activity 31

Represent the first part of the motion by the vector $\mathbf{a}$, and the second part by the vector $\mathbf{b}$. Then the resultant displacement is $\mathbf{a}+\mathbf{b}$.


The angle at the tip of $\mathbf{a}$ in the triangle above is $315^{\circ}-270^{\circ}=45^{\circ}$, as shown.
We know that $|\mathbf{a}|=40 \mathrm{~cm}$ and $|\mathbf{b}|=20 \mathrm{~cm}$.
The magnitude of the resultant $\mathbf{a}+\mathbf{b}$ can be found by using the cosine rule:

$$
|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2 \times|\mathbf{a}| \times|\mathbf{b}| \times \cos 45^{\circ}
$$

which gives

$$
\begin{aligned}
|\mathbf{a}+\mathbf{b}| & =\sqrt{|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2 \times|\mathbf{a}| \times|\mathbf{b}| \times \cos 45^{\circ}} \\
& =\sqrt{40^{2}+20^{2}-2 \times 40 \times 20 \times \cos 45^{\circ}} \\
& =29.472 \ldots \mathrm{~cm}
\end{aligned}
$$

The angle marked $\theta$ can be found by using the sine rule:

$$
\begin{aligned}
& \frac{|\mathbf{b}|}{\sin \theta}=\frac{|\mathbf{a}+\mathbf{b}|}{\sin 45^{\circ}} \\
& \frac{20}{\sin \theta}=\frac{29.472 \ldots}{\sin 45^{\circ}} \\
& \sin \theta=\frac{20 \sin 45^{\circ}}{29.472 \ldots}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{20 \sin 45^{\circ}}{29.472 \ldots}\right)=28.67 \ldots{ }^{\circ} \\
& \text { so } \\
& \theta=28.67 \ldots
\end{aligned}
$$

## Unit 5 Coordinate geometry and vectors

or

$$
\theta=180^{\circ}-28.67 \ldots{ }^{\circ}=151.32 \ldots \circ^{\circ} .
$$

Since $|\mathbf{b}|<|\mathbf{a}+\mathbf{b}|$, we expect $\theta<45^{\circ}$, so the required solution is $\theta=29^{\circ}$ (to the nearest degree). The bearing of $|\mathbf{a}+\mathbf{b}|$ is $90^{\circ}-29^{\circ}=61^{\circ}$ (to the nearest degree).
So the resultant displacement of the grab has magnitude 29 cm (to the nearest cm ) and bearing $61^{\circ}$ (to the nearest degree).

## Solution to Activity 32

Let $\mathbf{s}$ be the velocity of the ship, and let $\mathbf{b}$ be the velocity of the boy relative to the ship. Then the resultant velocity of the boy is $\mathbf{s}+\mathbf{b}$, as shown below.


We know that $|\mathbf{s}|=10.0 \mathrm{~m} \mathrm{~s}^{-1}$ and $|\mathbf{b}|=4.0 \mathrm{~m} \mathrm{~s}^{-1}$. Since the triangle is right-angled,

$$
\begin{aligned}
|\mathbf{s}+\mathbf{b}| & =\sqrt{|\mathbf{s}|^{2}+|\mathbf{b}|^{2}} \\
& =\sqrt{10^{2}+4^{2}} \\
& =\sqrt{116} \\
& =10.77 \ldots \mathrm{~ms}^{-1} .
\end{aligned}
$$

The angle $\theta$ is given by

$$
\tan \theta=\frac{|\mathbf{b}|}{|\mathbf{s}|}=\frac{4}{10}=\frac{2}{5} .
$$

So

$$
\theta=\tan ^{-1} \frac{2}{5}=21.8 \ldots .
$$

The bearing of $\mathbf{s}+\mathbf{b}$ is $30^{\circ}+21.8 \ldots{ }^{\circ}=51.8 \ldots{ }^{\circ}$.
So the resultant velocity of the boy is $10.8 \mathrm{~m} \mathrm{~s}^{-1}$ (to 1 d.p.) on a bearing of $52^{\circ}$ (to the nearest degree).

## Solution to Activity 33

Let $\mathbf{s}$ be the velocity of the ship in still water, and let $\mathbf{c}$ be the velocity of the current. The resultant velocity of the ship is $\mathbf{s}+\mathbf{c}$, as shown below.


We know that $|\mathbf{s}|=5.7 \mathrm{~m} \mathrm{~s}^{-1}$ and $|\mathbf{c}|=2.5 \mathrm{~m} \mathrm{~s}^{-1}$. The angle marked $\theta$ at the tail of $\mathbf{s}$ is given by $\theta=230^{\circ}-180^{\circ}=50^{\circ}$. Since alternate angles are equal, the angle $\theta$ marked at the tip of $\mathbf{s}$ has the same size.
The angle $\phi$ marked at the tail of $\mathbf{c}$ is given by $\phi=360^{\circ}-330^{\circ}=30^{\circ}$.
So the bottom angle of the triangle is $\theta+\phi=50^{\circ}+30^{\circ}=80^{\circ}$.
Applying the cosine rule gives

$$
\begin{aligned}
& |\mathbf{s}+\mathbf{c}|^{2} \\
& \text { so } \\
& \begin{aligned}
&|\mathbf{s}|^{2}+|\mathbf{c}|^{2}-2|\mathbf{s}||\mathbf{c}| \cos (\theta+\phi), \\
&|\mathbf{s}+\mathbf{c}|=\sqrt{5.7^{2}+2.5^{2}-2 \times 5.7 \times 2.5 \times \cos 80^{\circ}} \\
&=5.813 \ldots \mathrm{~m} \mathrm{~s}^{-1} .
\end{aligned}
\end{aligned}
$$

The angle $\alpha$ can be found by using the sine rule:

$$
\begin{aligned}
& \frac{|\mathbf{c}|}{\sin \alpha}=\frac{|\mathbf{s}+\mathbf{c}|}{\sin (\theta+\phi)} \\
& \sin \alpha=\frac{|\mathbf{c}| \sin (\theta+\phi)}{|\mathbf{s}+\mathbf{c}|}=\frac{2.5 \sin 80^{\circ}}{5.813 \ldots}
\end{aligned}
$$

Now,

$$
\sin ^{-1}\left(\frac{2.5 \sin 80^{\circ}}{5.813 \ldots}\right)=25.058 \ldots
$$

So $\alpha=25.058 \ldots{ }^{\circ}$ or
$\alpha=180^{\circ}-25.058 \ldots{ }^{\circ}=154.941 \ldots$.
But $|\mathbf{c}|<|\mathbf{s}+\mathbf{c}|$, so we expect $\alpha<\theta+\phi$; that is, $\alpha<80^{\circ}$. So $\alpha=25.058 \ldots{ }^{\circ}$, and hence the bearing of $\mathbf{s}+\mathbf{c}$ is $230^{\circ}+25.058 \ldots{ }^{\circ}=255.058 \ldots \circ$.
The resultant velocity of the ship is $5.8 \mathrm{~m} \mathrm{~s}^{-1}$ (to 1 d.p.) on a bearing of $255^{\circ}$ (to the nearest degree).

