Unit 5 Coordinate geometry and vectors

Solution to Activity 23

- (a) The vector \mathbf{f} is equal to the vector \mathbf{a} .
- (b) The vector **d** is equal to the vector \overrightarrow{PQ} .

Solution to Activity 24

Solution to Activity 25

Solution to Activity 26

Solution to Activity 27

- (a) The velocity of a wind of 70 knots blowing from the north-east is represented by $2\mathbf{v}$.
- (b) The velocity of a wind of 35 knots blowing from the south-west is represented by $-\mathbf{v}$.

Solution to Activity 28

(a)
$$4(\mathbf{a} - \mathbf{c}) + 3(\mathbf{c} - \mathbf{b}) + 2(2\mathbf{a} - \mathbf{b} - 3\mathbf{c})$$
$$= 4\mathbf{a} - 4\mathbf{c} + 3\mathbf{c} - 3\mathbf{b} + 4\mathbf{a} - 2\mathbf{b} - 6\mathbf{c}$$
$$= 8\mathbf{a} - 5\mathbf{b} - 7\mathbf{c}$$

a) **b**)

(b) (i)
$$4\mathbf{x} = 7\mathbf{a} - 2\mathbf{b}$$
$$\mathbf{x} = \frac{7}{4}\mathbf{a} - \frac{1}{2}\mathbf{b}$$
(ii)
$$5\mathbf{x} = 2(\mathbf{a} - \mathbf{b}) - 3(\mathbf{b} - \mathbf{b})$$
$$= 2(\mathbf{a} - \mathbf{b}) + 3(\mathbf{a} - \mathbf{b})$$
$$\mathbf{x} = \mathbf{a} - \mathbf{b}$$

Solutions to activities

Solution to Activity 29

(a) The bearing of a is 45°, the bearing of b is 315°, and the bearing of c is 225°, as shown below.

(b)

Solution to Activity 30

Represent the first part of the motion by the vector \mathbf{a} , and the second part by the vector \mathbf{b} . Then the resultant displacement is $\mathbf{a} + \mathbf{b}$.

Since **a** and **b** are perpendicular, and $|\mathbf{a}| = 5.3 \text{ km}$ and $|\mathbf{b}| = 2.1 \text{ km}$,

$$|\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2}$$

= $\sqrt{5.3^2 + 2.1^2} = \sqrt{32.5}$
= 5.70... km.

The angle marked θ is given by

$$\tan \theta = \frac{|\mathbf{b}|}{|\mathbf{a}|} = \frac{2.1}{5.3},$$

 \mathbf{SO}

$$\theta = \tan^{-1}\left(\frac{2.1}{5.3}\right) = 22^{\circ}$$
 (to the nearest degree)

So the bearing of $\mathbf{a} + \mathbf{b}$ is $60^\circ + 22^\circ = 82^\circ$ (to the nearest degree).

The resultant displacement of the yacht has magnitude 5.7 km (to 1 d.p.) and bearing 82° (to the nearest degree).

Solution to Activity 31

Represent the first part of the motion by the vector \mathbf{a} , and the second part by the vector \mathbf{b} . Then the resultant displacement is $\mathbf{a} + \mathbf{b}$.

The angle at the tip of **a** in the triangle above is $315^{\circ} - 270^{\circ} = 45^{\circ}$, as shown.

We know that $|\mathbf{a}| = 40 \text{ cm}$ and $|\mathbf{b}| = 20 \text{ cm}$. The magnitude of the resultant $\mathbf{a} + \mathbf{b}$ can be found by using the cosine rule:

 $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 \times |\mathbf{a}| \times |\mathbf{b}| \times \cos 45^\circ,$ which gives

$$|\mathbf{a} + \mathbf{b}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 - 2 \times |\mathbf{a}| \times |\mathbf{b}| \times \cos 45^\circ}$$
$$= \sqrt{40^2 + 20^2 - 2 \times 40 \times 20 \times \cos 45^\circ}$$
$$= 29.472 \dots \text{ cm.}$$

The angle marked θ can be found by using the sine rule:

$$\frac{|\mathbf{b}|}{\sin \theta} = \frac{|\mathbf{a} + \mathbf{b}|}{\sin 45^{\circ}}$$
$$\frac{20}{\sin \theta} = \frac{29.472...}{\sin 45^{\circ}}$$
$$\sin \theta = \frac{20 \sin 45^{\circ}}{29.472...}$$
Now,
$$\sin^{-1} \left(\frac{20 \sin 45^{\circ}}{29.472...}\right) = 28.67...^{\circ},$$
so

$$\theta = 28.67 \dots^{\circ}$$

Unit 5 Coordinate geometry and vectors

or

$$\theta = 180^{\circ} - 28.67 \dots^{\circ} = 151.32 \dots^{\circ}.$$

Since $|\mathbf{b}| < |\mathbf{a} + \mathbf{b}|$, we expect $\theta < 45^{\circ}$, so the required solution is $\theta = 29^{\circ}$ (to the nearest degree). The bearing of $|\mathbf{a} + \mathbf{b}|$ is $90^{\circ} - 29^{\circ} = 61^{\circ}$ (to the nearest degree).

So the resultant displacement of the grab has magnitude 29 cm (to the nearest cm) and bearing 61° (to the nearest degree).

Solution to Activity 32

Let **s** be the velocity of the ship, and let **b** be the velocity of the boy relative to the ship. Then the resultant velocity of the boy is $\mathbf{s} + \mathbf{b}$, as shown below.

We know that $|\mathbf{s}| = 10.0 \,\mathrm{m \, s^{-1}}$ and $|\mathbf{b}| = 4.0 \,\mathrm{m \, s^{-1}}$. Since the triangle is right-angled,

$$|\mathbf{s} + \mathbf{b}| = \sqrt{|\mathbf{s}|^2 + |\mathbf{b}|^2}$$

= $\sqrt{10^2 + 4^2}$
= $\sqrt{116}$
= 10.77 ... m s⁻¹.

The angle θ is given by

$$\tan \theta = \frac{|\mathbf{b}|}{|\mathbf{s}|} = \frac{4}{10} = \frac{2}{5}.$$

 $\theta = \tan^{-1} \frac{2}{5} = 21.8...^{\circ}.$ The bearing of $\mathbf{s} + \mathbf{b}$ is $30^{\circ} + 21.8...^{\circ} = 51.8...^{\circ}.$ So the resultant velocity of the boy is $10.8 \,\mathrm{m\,s^{-1}}$ (to 1 d.p.) on a bearing of 52° (to the nearest degree).

Solution to Activity 33

Let \mathbf{s} be the velocity of the ship in still water, and let \mathbf{c} be the velocity of the current. The resultant velocity of the ship is $\mathbf{s} + \mathbf{c}$, as shown below.

We know that $|\mathbf{s}| = 5.7 \,\mathrm{m \, s^{-1}}$ and $|\mathbf{c}| = 2.5 \,\mathrm{m \, s^{-1}}$. The angle marked θ at the tail of **s** is given by $\theta = 230^{\circ} - 180^{\circ} = 50^{\circ}$. Since alternate angles are equal, the angle θ marked at the tip of **s** has the same size.

The angle ϕ marked at the tail of **c** is given by $\phi = 360^{\circ} - 330^{\circ} = 30^{\circ}.$

So the bottom angle of the triangle is $\theta + \phi = 50^{\circ} + 30^{\circ} = 80^{\circ}.$

Applying the cosine rule gives

$$|\mathbf{s} + \mathbf{c}|^2 = |\mathbf{s}|^2 + |\mathbf{c}|^2 - 2|\mathbf{s}||\mathbf{c}|\cos(\theta + \phi),$$

$$|\mathbf{s} + \mathbf{c}| = \sqrt{5.7^2 + 2.5^2 - 2 \times 5.7 \times 2.5 \times \cos 80^\circ}$$

= 5.813...ms⁻¹.

The angle α can be found by using the sine rule:

$$\frac{|\mathbf{c}|}{\sin \alpha} = \frac{|\mathbf{s} + \mathbf{c}|}{\sin(\theta + \phi)}$$
$$\sin \alpha = \frac{|\mathbf{c}|\sin(\theta + \phi)}{|\mathbf{s} + \mathbf{c}|} = \frac{2.5 \sin 80^{\circ}}{5.813 \dots}.$$

Now,

$$\sin^{-1}\left(\frac{2.5\sin 80^{\circ}}{5.813\dots}\right) = 25.058\dots^{\circ}.$$

So $\alpha = 25.058\dots^{\circ}$ or

 $\alpha = 180^{\circ} - 25.058 \dots^{\circ} = 154.941 \dots^{\circ}.$

But $|\mathbf{c}| < |\mathbf{s} + \mathbf{c}|$, so we expect $\alpha < \theta + \phi$; that is, $\alpha < 80^{\circ}$. So $\alpha = 25.058...^{\circ}$, and hence the bearing of s + c is $230^{\circ} + 25.058...^{\circ} = 255.058...^{\circ}$.

The resultant velocity of the ship is $5.8\,\mathrm{m\,s^{-1}}$ (to 1 d.p.) on a bearing of 255° (to the nearest degree).