Qi (a)

Very good - you missed labelling the two angles shown in red - these are useful for part(b)
(b)
"Plane heading" would be better here

(C) To find the resultant velocity V we need the bearing of \underline{V} and the length of the vector

For the beaning we want the angle θ shown above
(c) continued

OK but usual notation for vector
The sides of the trample magnitudes would be $|\mathrm{p}|,|\mathrm{w}|,|\mathrm{v}|$. To find θ we must first find V using the cosine rule:

$$
\begin{aligned}
& V^{2} P^{2} W^{2} \quad \text { should be } 100^{\circ} \text { but will } \\
& \text { follow through with } \\
& \text { your figure of } 120^{\circ} \\
& =700^{2}+80^{2}-2 \times 700 \times 80 \times \cos 120^{\circ} \\
& =496400-112000 \times \frac{1}{2} \text { oops, } \cos 120^{\circ}=-1 / 2 \text { so should have } \\
& 496400+11200 \times 1 / 2=552400 \text { and } \\
& =440400 \quad \text { hence }|v|=743.236 \ldots
\end{aligned}
$$

$$
\therefore V=\sqrt{440400}=663.63 \mathrm{t} 2 \mathrm{~d} . \mathrm{p} .
$$

Good work - right method, just lost a mark for one more slip here. You might have
Keep full accuracy until end of calculations
We find θ using the sine rule: noticed that your $|\mathbf{v}|$ was less than $|\mathbf{p}|$ which cannot be correct for this triangle

$$
\begin{gathered}
\frac{V}{\sin 120^{\circ}}=\frac{W}{\sin \theta}=\frac{W 0 \times \frac{\sqrt{3}}{2}}{663.63}=0.104 .399 \\
\sin \theta=\frac{W \sin 120^{\circ}}{V}=\begin{array}{l}
\text { Good - still following } \\
\text { through with your is where you } \\
\text { figure of } 120^{\circ}
\end{array} \\
\theta=\sin ^{-1}(0.104 .399)=5.99^{\circ} 152 \text { dep. } \begin{array}{l}
\text { need to use the full } \\
\text { not the rounded value accuracy }
\end{array}
\end{gathered}
$$

Vector notation: \mathbf{v} in print or \underline{v} in handwriting
Hence the resultant veloaty vector V has inagnitude value should be 663.63 and tearing $180^{\circ}-40^{\circ}-5.99^{\circ}=134.01^{\circ} \quad$ so $\theta=6.297639 \ldots$.

Well done Pascale. You were asked for magnitude
(c) $7 / 10$ to 1 d.p. with units and bearing to nearest degree so expected conclusion (with correct answers) is that v has magnitude $718.2 \mathrm{~km} / \mathrm{h}$ and bearing 134°.

Total for Q1: $2+3+7=12 / 18$

