On the evening of 3 Feb 2021 I attended a briefing for a new module, Machine learning and artificial intelligence (TM358), that is scheduled to begin in October 2021.
This short blog post represents a short summary of what was covered during the briefing. I must, however, begin with a short disclaimer: some of the detail that is presented here may well be subject to change as the module moves to production.
The briefing began with Neil Smith, module team chair, who said that “machine learning has been one of the biggest changes in computing in the past 20 years”. Neil also said that artificial intelligence has not featured within the computing curriculum for 5 years. In some ways, this module fills an important gap in the computing undergraduate curriculum.
TM358 is a part of a new qualification: BSc (Hons) Data Science. R38, as it is known, is a joint degree with the schools of Maths and Stats and Computing. To study the module, there are two important prerequisite modules: MU123 Discovering Mathematics and M269 Algorithms, data structures and computability.
From the computing side of the pathway, students can also study TM351 Data management and analysis.and TM356 Interaction design and the user experience. Students would begin their level 1 computing studies by studying TM111 Introduction to computing and information technology 1 and TM112 Introduction to computing and information technology 2.
TM358 has a particular focus on deep neural learning. I made a note that the module adopts an engineering approach and makes use of toolkits and languages that may already be familiar to some students. There is also strong thread of social impact and the importance of ethics. Key tools that students will use include the Python (featured in TM112) and Jupyter notebooks (featured in TM351). Datasets that students will be using will be provided by the module team.
Like many modules, it begins with an introductory (or foundation) section, and then subjects are introduced through a series of study blocks.
Foundations
This first section sets the scene and also presents a historical perspective. It also introduces what is called the “compute environment”, which is the environment that students will be using and studying. This first section will introduce different types of data, mention datasets, and introduce concepts and terms which will be later explored.
Block 1: Introduction to neural networks/deep learning
This first main block introduces artificial neural networks and some accompanying mathematics. The module offers students a handwriting recognition example. It also looks at AI and machine learning transparency challenges and what they may broadly mean to society.
Block 2: Image recognition with conventional neural networks
This block looks at limitations of traditional neural network systems. It examines the challenge of image classification. Students will be introduced to the concepts of neural network training, and data bias issues.
Block 3: Recurrent neural networks and long short term memory networks
Some key questions that are asked by this module includes: why do we need sequential modelling, what are the differences from the previous types of learning? Applications such as a speech recognition and sentiment analysis (which is about looking at whether things are views positively or negatively) are used. Recurrent neural networks (RNNs), bidirectional RNNs, long short term memory networks (LSTM) are studied.
Block 4: Unsupervised learning and autoencoders
I noted down a question that is addressed in this block, which is: what is unsupervised learning? Another topic autoencoders and their structure. I also made a note that there is a section about ethical issues.
Block 5: Alternatives to deep learning
Although there appears to be an emphasis on neural networks, it isn’t the only approach. This block says something about other approaches, such as, decision trees and Bayesian methods, exploring the reasons why different approaches might be chosen. Students will be using notebooks to study different datasets.
Block 6: Handling data
There is another question to answer, which is: why do we need to pre-process the data? I noted down the concept of discretisation and discretisation techniques. Another question that is addressed is: what is the effect of imbalanced data on learning algorithm performance? The block also covers solutions for the classification of imbalanced data.
Tuition and assessment model
Tutors will be required to give 10 hours of tutor or progression time. Progression time refers to time that isn’t allocated to tutorials but is used to help with student support and guidance. All tutorials will be delivered online through 2 clusters (groups of tutors). There is expected to be a tutorial to help students to prepare for each TMA and the EMA, with another tutorial for each block.
The module will use something called single component assessment, which means that the TMA results directly contribute to the final score, as opposed to students having to get distinctions in both the TMAs and an examinable component to gain a distinction.
There will be 3 TMAs (with an increasing percentage to the overall score), with an EMA contributing to 60% of the final score. For the EMA, “students be given a dataset and a task to accomplish using the techniques and tools taught in the module”. Students will also “write a report detailing the actions taken, justifications for the actions and decisions taken, results achieved, their understanding of the results and any ethical issues.”
Reflections
I studied AI as an undergraduate student, and again as a postgrad. My undergraduate AI module contained a lot about how to solve problems by searching (we also used a fancy language called Prolog). My postgraduate studies touched on the interesting philosophical questions that thinking about intelligence immediately provokes. I also remember that the last AI module that the OU used to have, M366 (if I remember the module code correctly) had a slightly different character to it.
There were terms in the TM358 that I didn’t recognise, which suggests that things have certainly moved on a lot since I have last studied AI. Two substantial changes may include the substantial increase in processing power that we now have at our disposal, and the availability of tools that we can draw upon to analyse data.
In terms of this module, it’s practical focus clearly comes through from the briefing. It seems to be about doing stuff, understanding tools and, significantly, understanding some of the ethical issues accompany the use of these tools.
Since I have enough on as a tutor (I’m tutoring on a second level module, and a project module), I don’t have any capacity to even consider making an application. This said, I do encourage other to consider making an application, since it does look fun, and challenging too. It strikes me that there is certainly a lot to learn.
Acknowledgements
With all tutor briefings, thanks go to all members of the module team, led by Neil Smith, who all gave presentations during this short briefing session. Some of the notes presented within this blog are drawn from a PowerPoint presentation that was made during the recruitment briefing. Acknowledgement are also given to curriculum manager, Sarah Bohn and Staff Tutors Christine Gardner and Frances Chetwynd.
Comments
New comment
Thanks for the writeup!
One thing wasn't mentioned in the briefing, but may be useful to note, is that Jupyter notebooks are being used in the updated M269, and in a new level 3 stats module.
Other people involved: Brendan Quinn gave an overview of the Data Science programme, aimed at Computing & IT based tutors. Other module team members are Mohamed Bennasar, Trish Charlton, and Dawei Song.
New comment
Thanks very much for posting this very useful article, Chris!
I have just completed an Open degree and am very drawn to what R38 offers – particularly TM358.
I have tried over the last 12-18 months to get more/any info on TM358 – but now detail is flooding-out.
I am very happy to see that Python and Jupyter notebooks (as used in the superb module TM351) are being used in TM358 – I was afraid that TM358 might be more M than T but it now looks like it is more T than M.
I’ll be signing-up!
BTW It appears there were two older related modules:
T396 Artificial intelligence for technology (1995-2006)
https://www.open.ac.uk/library/digital-archive/module/xcri:T396/study
M366 Natural and artificial intelligence (2007-2014)
https://www.open.ac.uk/library/digital-archive/module/xcri:M366/study
Thanks again,
Des
Availability
Thanks for the post. Was any mention made of availability of this module ?
I am being told by the maths support team that despite even having passed level 3 modules in probability and statistics as part of a STEM degree (r28) I must complete the entire 1st and 2nd year of a data science degree - and specifically I would have to take level 1 statistics module - in order to be allowed to take this module
This seems like utter madness !
Personally I have 35 years experience as a programmer and have worked with statistics most of my life - and yet I would have to study for 2 more years with the OU at the cost of nearly £12000 in order to be permitted to take this module.
I get the impression that the OU simply cannot cope with the demand for this course - I'm not sure if that's due to lack of hardware resources or teaching resources - but this course is currently - and very sadly - unavailable to all who are more than to take it but have chosen to go down the open (STEM) route.
So thank you for your tantalising description of what sounds like a fantastic course. If only it was available to more than the chosen few !
Question
Does this module just do detailed mathematical treatment for ANN or does it go into how backpropogation works for RNNs (including LSTMs) and CNNs at a detailed mathematical level. And Support Vector Machines, are there studied in detail with Lagrange Multipliers and so on. Or are these topics more covered on a pratical level of how to use them?