OU blog

Personal Blogs

Christopher Douce

A sketch of M813 Software Development and M814 Software Engineering

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 26 Nov 2024, 18:20

After becoming the module chair of TM354 Software Engineering, I had a look at two related postgraduate modules, M813 Software Development and M814 Software Engineering

These two modules sit alongside a number of other modules that make up the MSc in Computing programme. My intention was to see what related topics and subjects are taught, and whether there were any notable differences about how they were taught. 

This blog aims to highlight some of the key elements of these modules. To prepare this post, I had a good look through the module materials, including the assessment materials, and spoke with each of the module chairs. My intention of looking at these modules is to identify what themes and topics might potentially feed into a future replacement of TM354, or another related module. This summary is by no means comprehensive; the points I pick up on do, of course, reflect my interests.

I hope these notes are useful to anyone who is interested in either software engineering, or postgraduate computing, or both. Towards the end of the blog, I share a quick compare and contrast between the two modules and share some links to resources for anyone who might be interested.

M813 Software Development

M813 aims to “to provide the skills and knowledge necessary to develop software in accordance with current professional practice, approaches and techniques”.

The key module learning aims are to:

  • teach you a variety of fundamental techniques for software development across the software lifecycle, and to provide practice in the use of these techniques
  • give you enough knowledge to be able to choose between different development techniques appropriate for a software development context
  • make you aware of design and technology trade-offs involved in developing enterprise software systems
  • enable you to evaluate current software development practices
  • give you an understanding of current and emerging issues in software development
  • give you the research skills needed to stay at the leading edge of software development.

The module description suggests that students “will have an opportunity to engage with an organisational problem of your choice, working towards a fit-for-purpose software solution” and students “will also have an opportunity to carry out some independent research into issues in software development, including analysing, evaluating and presenting results”.

It makes use of a set text, Head First Design Patterns, accessed through the university library. To help students with the more technical bits, it shares some resources about a graphical tool, Visual Paradigm, which enables students to create diagrams using the Unified Modelling Language (UML).

The module has 10 units of study, which are spread over four blocks. The module’s assessment strategy summarised below, followed by each of the blocks.

Assessment strategy

Like many other modules, there are two parts of assessment: tutor marked assessments (TMAs), and an examinable component, which is an end of module assessment (EMA). Interestingly, the TMAs adopt a more practical and software development skills perspective, whereas the EMA is more about carrying out research which is applied to a study context. To pass the module, students need to gain an average score of 50% in both of the components.

TMAs 1 and 3 account for 30% of the continually assessed part of the module. Due to the practical focus of TMA 2, this assessment accounts for 40% of the overall TMA score.

Block 1: Software development and early lifecycle

This block is described as helping to “learn the principles and techniques of early software lifecycle, from requirements and domain analysis to software specification. You will engage with a number of practices, including capturing and validating requirements, and UML (Unified Modelling Language) modelling with activity and class diagrams.”

The model opens with a research activity which involves finding and reading academic articles. There are three other research activities which build on this first searching activity. These activities helps students to understand what the academic study of software engineering looks like. Plus, when working as a practicing software engineer, it’s important to know how to find and evaluate information about methods, approaches, and frameworks.

This unit beings to introduce students to a tool that they will use during the module; Visual Paradigm. Throughout the module, students will learn more about different UML diagrams, such as use cases, class diagrams, and activity diagrams.

Unit 1, introducing software development, shares a couple of perspectives: a philosophical perspective and a historical perspective (history is always useful), before mentioning risk, quality and then moving onto starting to look at UML.

Unit 2, requirements and use cases, covers the characteristics of requirements and the forms that they can be presented. Unit 3, from the context to the system, starts with activity diagram (which are all about representing a context) through to class diagrams, which is all about beginning to realise a design of software using abstractions. Finally, unit 4, specifying what the system should do, touches on more formal aspects of software specification.

Block 2: Design and code

This next block explores “principles and techniques of software design, construction, testing and version control”. Other topics include design patterns, UML modelling with state diagrams and creating of software using the Java language. Out of all the blocks in the module, this is the one that has a really practical focus.

In addition to links to further video tutorials about Visual Paradigm, there’s some guidance about how to start to use Microsoft Visual Studio Code, and some initial development activities.

Unit 5, design, introduces some basic design principles, and new forms of diagram: communication diagrams and object diagrams. Unit 6, from design to code, shares a bit more detail about the principles of object-oriented programming, and goes onto introducing the topic of configuration management. Unit 7, design patterns, continues the theme of object-oriented programming by introducing a set of patterns from the Gang of Four text, which is complemented by a software development activity. 

Block 3: Software architectures and systems integration

Block 3 goes up a level to explore how to “develop software solutions based on software architectures and frameworks”. 

Unit 8, software architectures introduces the notion of architectural patterns, and how to model patterns using UML. Another useful topic introduced is state machines. An important theme that is highlighted is the idea of layer of software which, in turn, is linked to the notion of persistence (which means ‘how data can be saved’). This is complemented by unit 9, component-based architectures, which offers a specific example.  The module concludes with unit 10, service-oriented architectures.

Block 4: EMA preparation

This fourth block relates to the module’s end of module assessment (EMA), where students have to carry out some applied research into a software context in which they are familiar with. To help students to prepare, there are some useful preparatory resources.

Reflections

I really liked that this module brings in a bit of history, describing the history of object-oriented programming. I also liked that it shared some really useful descriptions about the differences between scholarship and research. There are some common elements between M813 and TM354, such as requirements and the use of UML, but I’ll say more about this in a later section.

M814 Software Engineering

M814 is “about advanced concepts and techniques used throughout the software life cycle” and replaces two earlier 15 point modules: M882 Software Project Management and M883 Requirements Engineering.

The module aims are to:

  • develop your ability in the critical evaluation of the theories, practices and systems used in a range of areas of Computing
  • provide you with a specialised area of study in order that you can experience and develop the frontiers of practice and research in focused aspects of Computing and its application
  • encourage you, through the provision of appropriate educational activities, to develop study and transferable skills applicable to your employment and continuing professional development
  • enable you to develop a deeper understanding of a specialist area of Computing and to contribute to future developments in the field.

Although this module is less ‘applied’ than M813, there are some important elements. Students make use Git and GitHub, and use a simulation and modelling tool, InsightMaker.

The module has four study blocks, containing 26 study units; a lot more than M813. These are summarised in the following sections. Students are also required to consult a set text, Mastering the requirements process by Robertson and Robertson, which is also available through the OU Library.

Assessment strategy

The module has three TMAs and an end of module exam, which is taken remotely (as opposed to an EMA). TMAs 1 and 3 have a weighting of 30% each, with TMA 2 being slightly more substantial, accounting for 40%. Students have to pass both the TMAs and the exam, gaining an average of 50% in each.

The exam covers all module learning outcomes and is split into two sections. For the second section students would have needed to be familiar with a research article.

Block 1: Software engineering context

The first two units, unit 1, software in the information society and unit 2, the organisational and business context, introduces software engineering. This is followed by an introduction to the organisational context through unit 3, organisational context, codes and standards. The title of this unit refers to professional codes, and professional and technical standards. Accompanying topics include software and the law, which includes intellectual properly, trademarking, patents, and data protection (GDPR) legislation. The final unit, unit 4, addresses ethics and values in software engineering.

Block 2: Software engineering methods and processes

Block 2 concerns software engineering methods and processes. The first two units highlights the notion of the process model, project management, and quality management, which includes the ISO 9001 standard and the Capability Maturity Model (CMMI). These are presented in unit 6, software activities and unit 7, software engineering processes. 

The module then covers unit 8, agile processes and unit 9, managing resources, which includes materials about SCRUM, Kanban, and something called the SAFe framework, which is a set of workflow patterns for implementing agile practices. There is also a case study which describes how agile is used in practice. I remember seeing some photographs that show how developers have been sharing information about project status using whiteboard and other displays. The module concludes with unit 10,  managing uncertainty and risk, and unit 11, software quality.

A part of this block makes use of simulation, introducing a ‘simulation modelling tool’ which can be used to experiment with the concept of Brooks’ law. As an aside, this reminds me of a short article https://ppig.org/papers/2002-ppig-14th-hales/ that touched on a similar topic. In the context of M814, I like how the idea of simulation has been applied in an interesting and pedagogically helpful way.

Block 3: Software deployment and evaluation

Block 3 concerns software deployment and evolution. In other words, what happens after implementation. It includes some materials about DevOps (the integration of development with the operation of software), and continual integration and delivery. There are three units: unit 12, software configuration management, which introduces Git and GitHub, unit 13, software deployment, and unit 14, software maintenance and evolution.

This block returns to simulation, specifically exploring Lehman’s 2nd law (Wikipedia), which means that software complexity increases unless something is done to reduce it. Students are also directed to a text book, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation, by Humble and Farley. 

Block 4: Back to the beginning

The final block returns to the beginning by looking at requirements engineering, extensively drawing on the set text, Mastering the Requirements Process. It introduces what is meant by requirements engineering, a subtopic within software engineering. Unit titles for this block includes scoping the business problem, functional and non-functional requirements, fit criteria and rationale, ensuring quality of requirements, and reusing requirements. The block concludes with a useful section: unit 26, current trends in software engineering.

Reflections

I really liked the introductory sections to this module; they adopt a philosophical tone. I also really like how it uses case studies. What is notable is that there are a lot of materials to get through, but all the topics and units are certainly appropriate and are needed to cover the module in a good amount of depth.

Similarities and differences

There is understandably some cross over between M813 and M814; they complement each other. M813 is more of an ‘applied’ module than either M814 or TM354, but M814 does contain a few practical elements. It’s use of simulations is particularly interesting. In comparison to the undergraduate software engineering module, TM354, the two postgraduate modules do clearly require the application of higher academic skills, such as understanding what it means to carry out scholarship.

In my opinion, there appear to be more similarities between M813 and TM354 than with M814. It is worth noting that TM354 introduces topics that can be found in both postgraduate modules.

TM354 and M813 both emphasise design patterns. An important difference is that in M813, students are required to demonstrate how patterns might be applied, whereas on TM354 students have to necessarily demonstrate their understanding of design patterns that have been chosen by the module team. Both modules also explore the notions of software architectures and state machines.

There are differences between TM354 and M813 in terms of tools. TM354 steers away from the use of diagramming tools, but by way of contrast, M813 makes extensive use of Visual Paradigm. TM354 makes use of NetBeans for the design patterns task, whereas M813 introduces students to Visual Studio Code.

By way of contrast, M814 covers wider variety of concepts which are important to the building of ‘software in the large’; the importance of software maintenance and the characteristics of software quality.

UML is featured in all three modules. They all refer to software development methods and requirements engineering. Significantly, they all use the Roberston and Robertson text. The differ in terms of the depth they explore the topic.

To conclude, software development and software engineering are huge subjects. The three modules that are mentioned in this blog can only begin to scratch the surface. Every problem will have a unique set of requirements, and every problem will require different methods. There are two key elements: people and technology. Software is designed by people and used by people. Where there’s people, there’s always complexity. Adding technology in the mix adds an additional dimension of complexity.

Resources

The following links takes you to some useful OpenLearn resources:

Acknowledgements

Many thanks to Arosha Bandara who spent some time introducing me to some the key elements of M814. I also extend thanks to Yujin Yu. Both Arosha and Yujin are professors of software engineering. The current chair of M814 is Professor Andrea Zisman, who is also a professor of software engineering. Thanks are also extended to the TM354 module team: Michael Ulman, Richard Walker, Petra Wolf and Andrea Zisman.

Permalink Add your comment
Share post
Christopher Douce

TM470 Considering LSEPI (again)

Visible to anyone in the world
Edited by Christopher Douce, Friday, 4 Oct 2024, 16:03

This post follows on from an earlier post: TM470 Considering LSEPI. The difference between this blog and the earlier one is that this article places more emphasis on the ethics bit, specifically, how to treat participants ethically.

Before looking at anything specific, it’s useful to remind ourselves of what learning outcomes in TM470 relate to ethics:

LO10. Identify and address the legal, social, ethical and professional issues (LSEPIs) and the equality, diversity and inclusion (EDI) concerns that may arise during the development and use of computing and IT systems.

To gain a distinction for this learning outcome, you need to provide evidence to show that you have “comprehensively identified the relevant LSEPIs and EDI concerns arising during development and use and modified their project work to take these into account and behaved professionally in all aspects of [your] project work.”

At the beginning of your project it is very likely that you will be gathering requirements from stakeholders. During the middle of your project, you may well ask stakeholders for opinions about your intermediate designs, or emerging solutions; maybe asking their opinions about some prototypes. Towards the end of your project, you may (or may not) choose to carry out an evaluation. Your final project evaluation may involve stakeholders, who might be potential users of whatever product or system you have created.

Treating participants ethically

Given that you are likely to use participants throughout your project, what do you need to ensure they are treated in an ethical way?

A fellow TM470 tutor, Kawal Banga, offers the following useful summary: “you will need to consider how you are collecting data, where you are storing it, what stakeholder contact details you are storing, how you are ensuring anonymity and confidentiality, what will happen with the data on completion of the project, etc.“

Hold onto these points. 

Planning your project

TMA 1 is all about identifying a project, describing its aims, creating a plan and sharing it with your tutor. TMA 2 is all about showing that you have made some progress on your project and beginning to write about the ethical issues.

TMA01 states that:

“You will be considering in detail any legal, social, ethical and professional issues relating to your choice in TMA 02, but at this point you should consider whether these are likely to be serious enough to mean your project choice is inappropriate.”

It directs you to read some resources that have been prepared by the module team.

Before you begin writing your first TMA, do make sure you find the time to have a discussion with your tutor about your project and its aims.

In many cases, one of the first activities that you will carry out will be to establish requirements which may mean that you will need to talk to stakeholders. A stakeholder is, of course, anyone who has a vested interest in your project, or will be affected by its implementation or creation. Before you speak with anyone, you need to consider (as Kawal pointed out) how to collect data, what data you are collecting, and where you might be storing it.

TMA02 states that:

“If your project involves you working with human participants, you should include, as an appendix, your TMA02 LSEPI Form, found in the LSEPI Templates folder.” 

The point being made here is that you may need to address ethical issues before you get to your second TMA. Gathering requirements may mean working with people.

Working with stakeholders

When gathering requirements, if you need to consult people, it is important that you seek permission from those who you speak with and their line managers. Here is a suggestion about different resources that you should consider preparing before you interview anyone:

A project information sheet. This could be a single printed page, which you could then read before you go ahead with any data collection.

A consent form. This form is used to secure permission to gather data, and also to store data. More information about storing data can be seen in a related blog: Writing successful data management plans.

A set of interview questions, a set of survey questions and forms that can be used to gather responses.

Do consider sharing each of these with your tutor; they may well have some good ideas about how they might be improved.

Evidencing an ethical approach

When your examiner reads your project report, they will look for a description of what you have done and evidence that shows you have done what you have said you have done. Using a concept from creative writing, it is important to show the reader, rather than to tell the reader. 

You can show the examiner you have adopted an ethical approach by sharing evidence. You might, for example, share the following appendices:

  • Provide a copy of a project information sheet.
  • Provide samples of signed consent forms. You don’t need to provide copies of all the signed consent forms; one of each broad group of stakeholders will be enough. Make sure you hide any names and signatures. There is no reason why the examiner needs to see these.
  • Provide copies of any interview scripts or data collection forms.

Each appendix should, of course, be referenced within the body of your report.

Resources

The module website contains a number of helpful resources and pages. In particular, within the Legal, Social, Ethical and Professional issues resource, the following two sections are particularly useful:

  • Working with human participants
  • Appendix A Guidelines for conducting research with human participants

There is also a folder called LSEPI templates which can be found within the study materials section. At the time of writing, this folder contains the following files:

  • TMA02 LSEPI Form
  • consent-form-template
  • participant-information-sheet-template
  • EMA LSEPI Form

Do take the time to have a look at each of these files, and reflect on how they might be used within your project. 

When you submit your EMA you need to include a completed copy of the EMA LSEPI form as an appendix (which is something that be easily forgotten).

These above points offer some very practical advice about what you need to do to provide evidence of working with participants. This is, arguably, a very narrow treatment of the connection between your project and ethics. 

Thinking in an ethical way means that you need to consider the impact on any digital tool or product. If you are interested what this means, a good starting point is Carissa Weitz’s Oxford Handbook of Digital Ethics (Oxford University press). You might find a chapter in this handbook that connects with the aim of your project. 

There is a requirements that your write about legal, social and ethical issues within your TMA 2 submission. If you're unsure about what this mean, or how to begin, a good bit of advice is, of course, find some time to speak with your tutor.

Acknowledgements

Many thanks to Kawal Banga and the TM470 module team.

Permalink Add your comment
Share post
Christopher Douce

TM470 Considering software requirements

Visible to anyone in the world
Edited by Christopher Douce, Thursday, 11 Apr 2024, 09:30

If your TM470 project is all about the developing software to solve a problem, requirements are really important. Requirements are all about specifying what needs to be built and what software needs to do. A good set of requirements will also enable you to decide whether or not your software development has been successful. They can help you to answer the question: “does it do what we expect it to do?” There is a direct link between requirements and testing.

The exact nature of your requirements will depend on the nature of your project. There are different types of requirements. Two high level types of requirements are: functional requirements and non-functional requirements. Modules such as TM354 Software Engineering provide some further information about the different types and categories, and different aspects you might want to consider. 

One thing that you need to decide on is: how to you write down your requirements? The decisions that you take will, of course, relate to what your project is all about. Some projects will need formal approaches, perhaps using Volere shells, whereas other projects may use something like use case diagrams. If your project is interaction design heavy, your requirements may be embodied with artefacts such as sketches, prototypes, scenarios and personas. To learn more about these different approaches, you need to refer back to the module materials for some of the modules you have studied. You should also consider having a look in the OU library to see what you can find.

There is also, of course, also a link between your chosen project model, and your choice of requirements. Stakeholders are also of fundamental importance: you need to know who to speak with to uncover what your requirements are. You need to make a decision about how to record your requirements, and justify why you have adopted a particular approach. Different people will, of course, understand requirements in different ways. How you speak to fellow software engineers will be different to how you speak to end users.

I recently listened to a really interesting podcast about requirements engineering from something called Software Engineering Radio, which is associated with the IEEE Software magazine. Here's a link to the podcast: Software Requirements Essentials: SE Radio 604 Karl Wiegers and Candase Hokanson.

Although this is just over an hour (and I know everyone is busy), it is worth a listen.

Some key themes and topics addressed in this podcast includes:

  • What do requirements mean?
  • What is requirements elicitation?
  • How can requirements be presented? Or, what is does a requirement specification look like?
  • Do users know what they need?
  • How much requirements analysis is needed?

The podcast concludes with a question which begins: what tips would you share for someone who is involved with an ongoing project? (The answer to this question is very pragmatic)

Reflections

An interesting reflection (and comment that emerged from this podcast) is that the requirements approach that you adopt relates to the risks that are inherent within your project, and the implications of any potential software failures. This, in turn, is linked to the LSEP issues which are starting to be explored within your TM470 TMA 2.

When you are addressing requirements, you can highlight different requirement gathering approaches in your literature review. Do use module materials that you have previously studied as a jumping off point to do some further reading about the subject by looking at resources you can find in the OU library, but do be mindful about getting sucked into various ‘rabbit holes’; requirements engineering is a subject all of its own. When it comes to your TM470 project, you need to make practical decisions, and justify your decisions.

Permalink Add your comment
Share post

This blog might contain posts that are only visible to logged-in users, or where only logged-in users can comment. If you have an account on the system, please log in for full access.

Total visits to this blog: 2348687