OU blog

Personal Blogs

Christopher Douce

T217/8 module briefing

Visible to anyone in the world

Even though I’m based in the Computing and Communications department, I have to confess that I do a bit of moonlighting in the Engineering and Innovation department.  I don’t feel too guilty about doing this since there is a lot of cross over between some of the subjects.  One of the cross over subjects is design: computer systems need effective and efficient interfaces, and software systems need (obviously) to be designed (or engineered).  An important question is how we might set about creating different designs.  There are, of course, strong connections between the subjects of design and engineering too.

This blog post is from a set of notes that I made during a module briefing that I attended on 28 September.  Module briefings are events that happen whenever a new Open University module starts.  It’s an opportunity for the module team to meet all the associate lecturers who have been recruited and an opportunity for them to ask questions about how things are going to run.

The event on the 12 September introduced two new design modules: T217 Design Essentials and T218 Design for Engineers.   These two second level modules follow on from a first level introductory module, U101 Design Thinking.  Whereas U101 (as far as I understand things) helps students to start to think like a designer though engendering a playful and reflective approach, T217 and T218 begin to focus on more practical and detailed issues that relate to products and how they might be manufactured.  The forthcoming T317 module, Innovation: Designing for Change, will move things along a bit further by considering wider issues, such as how design connects with and interacts with society.  (I’ve only heard snippets about this new module, so I had better not go on and say something that patently isn’t true!)

The briefing wasn’t held in the university but in a nearby conference centre.  Without having done a head count, I estimate that there were about thirty people in total.  This includes T217 and T218 tutors and their line managers (staff tutors) who will be helping within things behind the scenes.  We were, of course, joined by members of the T217/8 module team (Theo Zamenopoulos, Georgy Holden and Jeff Johnson) and our curriculum manager (Hannah Juma).

Module structure

Much of the following information is available on the module description, but I’m also including it here too (since it was explicitly covered during the briefing).  T217 comprises of five blocks.  These are: exploring designs and designing, designing for people, creative designs, embodying designs and design for making.  The module comprises of a set of printed books as well as a modelling workbook, which helps students to get to grips with sketching (an invaluable skill for communicating the designs of products).

There is, of course, a module website which leads everyone through the module materials a week at a time.  During the module, there are a set of skills development activities.  There are three types: design activities, assessment activities (which help to prepare students for the assignments), and workbook activities (which are all about building skills and confidence).

T217 is assessed by four tutor marked assignments and an end of module exam.  T218, on the other hand, is slightly different – it has three tutor marked assignments and is examined by a substantial piece of work, which is known as an end of module assessment.

Block summary

The first block is all about big ideas in design and how it relates to engineering, human and cultural perspectives.  It contains some ideas from the history of design and tries to get students sketching.  (The design of chairs features heavily in this first block, since they permit different aspects or perspectives on design to be exposed).  The message for the second block is that it is essential to consider the end user.  This second block also takes some first steps towards thinking about environmental issues.  

The third block is a bit different.  This block addresses theories of creativity and invention and how these are reflected in the practices of creative designers and engineers.  It exposes students to different techniques about how to help designers to become more creative.

Block four is about how to move from a broad concept design into a more detailed design that could be eventually manufactured.  It also continues to help students to think spatially and visually.  In this block there is also an emphasis on style and branding and how it relates to design.

The final block moves into even more detail.  It covers issues such as the choice of materials for prototyping and manufacturing, encouraging students to analyse existing artefacts.  I made a note of the terms, ‘materials, methods and emotions’ during the briefing.  The block also makes connections with open source projects and introduces students to maker and hacker communities.

Software

Although you might argue that the designer’s most powerful tool is a pencil, developments in information technology has led to the emergence of new and exciting design and illustration tools.  Software and information technology can also take us towards new ways of working.  One of the challenges with learning design at a distance is that students don’t have the opportunity to work within a studio space (where students might have an opportunity to wander around to look at the work that other designers are working on, allowing students to gain not only motivation but also inspiration).  Building on the experience gained in U101, the T217 module team are using some on-line social software called OpenDesignStudio.  This is a web application that allows students to share aspects of their work to other students.  Sharing is done through the use of images.  Students might take photographs of sketches or rough physical models.

Students are also encouraged to use of 3D drawing software, such as SketchUp (Wikipedia).  They can also use other (but different) 3D drawing software, allowing students to gain an appreciation of the differences between tools.  Other software includes a database about different materials and manufacturing methods (which students can used to inform their assignments), and a tool that can be used to create mind maps.  (Students who studied U101 will remember a software package called Compendium).

On-line and face to face tutorials

A part of the day was also spent discussing on-line and face to face tutorials.  Although most of the teaching (and learning) is performed through the module materials and the guidance that associate lecturers offer in response to tutor marked assignments, students can also attend a number of interactive tutorials.

The face to face tutorials (or day schools) are arranged by the regional centre that a tutor is affiliated with.  The on-line tutorials, on the other hand, are held in an ‘on-line OU live’ room.  This is a virtual space where tutors can speak to students through their computer.  During the briefing, tutors were briefly shown how to use and access these on-line rooms.  Towards the end of the day, there was an activity where different groups of tutors got together to plan a day school (which is OU parlance for a bigger multi-group event that is held usually on a Saturday) to help students become familiar with a module.

Reflections

I always enjoy going along to module briefings; they’re always fun and useful events, and this was no exception.  A couple of weeks after this event both T217 and T218 began their first presentations.  For me, three things stood out during this day.  The first is the extent to which the design team are building on the work that they carried out in the earlier first level module: U101 Design Thinking.  The second is that the T217 module (as well as T218) has a very clear and compelling structure which relate to very explicit themes within design.  The third is the way that software and technology has been embedded within the module.

A final thought was that I was easily able to connect aspects of T217 and T218 to the module that I’ve been a tutor on for a number of years: M364 Fundamentals of Interaction Design.  I could clearly see links between areas such as user centred design, accessibility and the importance of skills such as sketching (as a way to rapidly communicate aspects of a design to others).  This, to me, underlined the importance and the need for connections between different subjects and disciplines.

Although I started this blog post by confessing that I have been moonlighting in another department, this term shouldn’t be used in a derogatory or negative sense.  When it comes to sharing perspectives and gaining insight into what happens in a slightly different (but connected) subject, moonlighting should be positively encouraged.

Acknowledgements

Many thanks to Theo Zamenopoulos (T217 module chair), Georgy Holden, Jeff Johnson (T218 module chair) and Hannah Juma (curriculum manager for T217 and T218) for running the briefing.

Permalink Add your comment
Share post
Christopher Douce

TU100 My digital life: AL development event

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 8 Oct 2013, 12:15

The second TU100 development day for associate lecturers in London and the surrounding regions was held on Saturday 7 September in the London regional centre.  The overall purpose of the day was to give associate lecturers who tutor on TU100 an opportunity to share experiences and to gather some useful feedback about the module that I could pass onto the module team.  These days are often great fun since everyone is very much up for sharing and talking (and this day was no exception).  This blog post represents a quick summary of what happened (from my own perspective, of course).

I’m writing this post for a number of reasons.  The first reason is to remember what happened on 7 September (since my memory is somewhat fallible), and the second reason is to give those tutors who couldn’t attend a bit of a feel for some of the subjects were discussed.  The third reason is to try to encourage other tutors to come along to other events that we run in the region.

There were essentially three different parts to the day.  The first part was all about teaching programming and Sense.  The second was about issues relating to student retention (where we heard about a university initiative called Project Retain), and the third was a general ‘feedback (or feedforward) to the module team’ session.

Session 1 : Teaching programming and Sense

During the first session we were put into small groups and Leslie, one of our very experienced TU100 tutors, distributed a questionnaire to inspire discussion.  These had the headings: ‘how does TU100 teach programming?’, ‘how does TU100 teach Sense?’, ‘student contact hours’ and ‘marking’.  Since I’m not a TU100 tutor I didn’t contribute too much to the group discussions, but I did make some notes of some of the themes that had emerged.

It wasn’t too long before the subject of programming cropped up.  One of the comments I’ve made is that the module doesn’t contain too much about testing.  One other thought is that early on in the module it is a good idea to emphasise the importance of Sense, particularly the Sense programming guide.  Another thing that tutors could do is to emphasise the wealth of Scratch resources that are available from MIT, and that perhaps we should more explicitly brief students that Sense is an extension of Scratch.

We soon began to talk about the on-line sessions which are presented through Blackboard Collaborate (or OU Live, as the university calls it).  One of the challenges with using the OU Live software is that it takes time to hand over screen sharing control when tutors ask students to complete certain tasks. 

An interesting point is that OU Live might not only be useful for running tutorials.  Since it contains a facility to record sessions it can also be used to record how any application is used.  Tutors (or faculty staff) could use OU Live to make ‘video’ recordings to demonstrate some programming concepts.

One of the biggest challenges that tutor’s face is the marking of assignments.  Sometimes tutors come across some puzzling situations, i.e. if students submit work where a screenshot represents a correct functioning program, but the program that is submitted isn’t actually correct.  When it comes to correspondence tuition, one of the fundamental challenges is to get into the head of the student.  This led to the question of whether we might be able to record video clips to show how students could have created correct solutions.

Plenary

After around fifteen or twenty minutes of chatting, all groups were asked to report back.  This section is a quick summary of some of the key points that some of the groups mentioned. 

TU100 doesn't contain a section that is dedicated only to programming.  Instead, programming can found in different sections throughout the module.  One point mentioned by tutors was that whilst TU100 teaches coding it doesn’t say much about how to do the 'problem solving' part of programming.  Instead, students are required to spend time discovering how to program by exploring and playing with the Sense environment.

Aware of this issue, some TU100 London tutors have started to present the fundamentals of how to break apart problems into pieces that could then be used to create code (either in the face to face sessions, or on the on-line sessions).  The precursor to TU100, M150 contained some materials to introduce students to something called structured English.  This gave way to a debate about whether some additional material might be added to TU100, but the problem is that there are already lots of materials that students and tutors need to cover. 

The point is that the foundations (in terms of learning to program) are really important, especially for students who might potentially struggle with the fundamentals of programming.  One tutor said that some students never make it to the starting line on Sense and this kind of resources could be a bridge between high level thinking and programming.  Some of the fundamentals that could be covered (by tutors) include the basic constructs of programming, which includes sequences of instructions, selection, iteration, the use of variables and debugging.

One tutor said that ‘we need to emphasise that it is important that students have a go’ (so students gain an understanding of what the building blocks of software is all about).  Also, there is need for a Sense forum, something or some area that allows sharing of materials and ideas between students and tutors. 

One piece of advice to students should be, ‘go look at what people do with Scratch’.  Another comment was, ‘add a couple of YouTube type videos about program analysis’.  The interactive nature of programming does lend itself to the use of OU Live, via application sharing, but on-line asynchronous tutorials are always going to be difficult and it takes a skilled facilitator to use more sophisticated functions such as on-line break out rooms.

Another perspective was that it might help the students if there was slightly more signposting to different resources.  (I understand that this is something that the module team have been working on for the new presentation).

Contact hours, tutorials and day schools

Different regions do different things when it comes to on-line tutorials and day schools.  When it comes to on-line time, the London region has given tutors the opportunity to schedule and run individual sessions.  The south region runs join sessions, as does the south east region.

When it comes to the face to face sessions, all the London groups come together to form a series of big day schools with the intention of creating a critical mass of both students and tutors.  In other regions tutors run sessions with pair of tutors.  The differences can be down to geography, both in terms of the location of the students and the location of the tutors.  One other thought from my side is that it is also important to emphasise to all students that they are encouraged to go to any of the tutorials that they might find in the tutorial finder (so they can discover evening as well as weekend events).

Some tutors use materials that are created by the module team, whereas others create their own materials.  One example is the London region tutors creating materials in structured English, with a view to trying to ‘plug a gap’ in the module materials (regarding how students new to programming might set about splitting a program into different components).

Another approach that some tutors adopt to use their allocated on-line time is to run on-line drop in sessions via OU live.  The idea for this is that students could just pop into an on-line room to have a chat with a tutor if they had any questions.  I personally find this a really compelling way of making use of the on-line rooms, particularly when students might be wishing to chat about programming.  The breaks with the formality of a one-to-one conversation of the technology, but also allows participants to see what is being displayed on a shared whiteboard.

Working with OU Live

The first tip (for tutors) was, ‘remember to switch on your microphone’.  Another thought was, ‘can we make headsets compulsory please?’  The reason for this is simple: when students use the microphone and headset that is built into a laptop, a whole group of participants can be easily distracted by feedback, making communications a whole lot more difficult.

In some respects, participating in an OU Live session can be quite intimidating and one observation was that there are lots of students who don’t want to speak at all.  Sometimes some students prefer to use the text chat window rather than using the microphone, which can then make if quite difficult for the tutor to keep on top of everything (which is why some regions share OU Live sessions between tutors).

One point was that it is useful to ‘do something’ every 20 or so seconds.  This might be asking students questions, requiring them to respond with yes/no answers.  Another thought is to use a series of polls to assess understanding of certain concepts.  (One thing that I have personally learnt from my experience with the South East of England training is to poll students using the, ‘happy face’ button, i.e. by asking the students, ‘is everyone happy?, can you click on your happy face?’  When you regularly ask this, it helps to keep the student’s attention).

Marking of code

This section of the plenary discussion echoed an earlier point, that when it comes to communicating what needed to be done with complicated TMA questions (which involve programming), could the module team produce a video about how things should run, or have been constructed (using Sense)?

I’ve learnt that there are two different ways to add comments into Sense code.  One way is to use something called a comment window.  Another is to add some in-line comments.  I made a note of a debate about the use of different types of comments and that in previous assignments a TMA question asked students to add comments.  The consensus was that comments help; they help students to reflect on the code that is being written and help tutors to understand what has been submitted.

Project retain

An interlude between the first and the second session was presented by Maggie King, our associate dean for teaching and learning.  One of Maggie’s responsibilities has been to be a part of a university wide project called ‘project retain’.  

Project Retain is intended to increase the university’s retention (and progression) of students across different levels of study.  The project has given the university a number of recommendations, which include: offer a guide to key learning points and module materials, schedule and communicate real-time contact sessions during the first two weeks of a module (ideally through a letter), open module materials and web sites before the module starts, and make it clear when assignments are coming up (so our students are not surprised when they have to submit their assignments).  The first year of study, it was argued, is absolutely crucial.

Session 2 : Retention

Terry, one of our experienced TU100 tutors facilitated the second main session of the day, which was also about retention (which is an issue that affects student satisfaction scores, recruitment and funding). 

Terry introduced us to HEFCE performance indicators.  These include dimensions such as the national student survey and other aspects such as the measurement of research performance.   Terry also introduced the difference between retention and progression.  Progression is all about moving from one level of study to another.  In some circumstances students can defer, allow them to take a bit of time out from study and enabling them to pick up a module again at a later date.

One of the biggest changes in the university in the forthcoming couple of years will be the introduction of something called student support teams.  Since more and more students will be registering with the intention of studying for a particular qualification, student support teams will play an important role in helping students with their choices along a student pathway – it is hoped will positively impact on student retention.

Terry covered a wealth of materials, including sharing with us points from a national audit office report, drop out rates, how retention in UK HEIs compare with the retention in other countries, and how the university compares with others in the national student survey.  During his session Terry asked us to consider the causes of student drop out during different stages of study, such as pre-entry, induction, on-programme and movement to the next level.  In the university both tutors, student advisors and module teams all have an important role to play.  The final question of the day was, ‘how can the university support you in the task of improving retention in your tutor groups?’  This was an exceptionally very good question to ask and is something that I’m keen to pick up on and delve into when I have a bit more time.

Session 3 : Open Session

I have to confess that I haven’t taken too many notes about this final session mainly because we ran out of time!  Everyone was very willing to share experiences and opinions throughout the day, which was one of its fundamental objectives.

Reflections

One tutor made the comment: ‘you can make a full time job of teaching TU100’.   TU100 is, without a doubt, a very big module: there is a lot of material and there are a lot of demands on the tutor’s time.  What struck me about this day was the willingness of tutors to do their utmost to help their students along their TU100 journey and their willingness to share experiences with each other.  The event had lots of energy and there was a lot of positive talking going on, yielding some very good ideas.  From my own perspective, I certainly hope to be running a similar event next year.  I’ve already had a couple of thoughts about what we might do.

I have learnt quite a few things from this session.  I’ve learnt about the opinions that tutors have about certain aspects of the module and I’ll be happy to forward these directly to the module team.  It is also clearly apparent that some students struggle with programming and the idea of producing some video material to help to explain certain concepts might be something could be useful.

Acknowledgements

Many thanks to all our TU100 associate lecturers who kindly gave up their valuable time to attend this event on a Saturday. If any of the tutors who have attended would like to add further comments, please don’t hesitate to comment below.

Permalink 1 comment (latest comment by Jonathan Vernon, Tuesday, 2 Jul 2019, 11:32)
Share post
Christopher Douce

European Innovation Academy

Visible to anyone in the world

In July I went to something called the European Innovation Academy. The idea behind the academy was to get groups of students together with the intention of creating a product or solution to a problem.  (By product, think of ‘mobile app’ or digital service of some kind).  As a part of a three week programme, students were taught about what is meant by innovation, introduced to concepts such as user centred design and different business models, before being presented with some talks about how to further develop their ideas.  At the end of the third week, participants were encouraged to write a short pitch to sell their product, solution or service, to potential investors, with a view to securing further funding.

Making skills visible

A couple of months earlier, I went to a UK Higher Education Academy event (blog) that was all about how best to go about the teaching of programming to those students who want to learn how to develop software for mobile devices.  What struck me was the point that if students want to get ahead, a really good idea is to create some kind of product that could be sold through vendor app stores (such as Google Play, for instance).  The advantage of doing this is that you advertise your skills in a very direct way and can clearly describe what you’ve done and achieved on your CV.

A substantial part of the academy was all about creating something.  As far as I understand it, there was time on the programme to allow students to not only learn about different platforms and tools, but also time to try (as best as possible) to create some prototype software that could be demonstrated to others.  Creating an artefact, as far as I could see, was considered to be a really important aspect.

Taking software further

A number of years ago, I used to have a job as a professional software developer.  It was thinking back to these times that I asked myself a fundamental question: ‘what on earth could I potentially say to the participants to help them appreciate some of the challenges inherent in creating software systems and products?’  I’ll put my hand up and say that I’ve always had one foot more firmly in the technology side of things than the business side.

I struck on an idea to not only talk about software, but also some of the more human sides of software development.  Software is, of course, a creative product, and there are things that we can do (in terms of structuring things to help people work together) to get things done. The things that we choose to do, however, are fundamentally affected by the types of product that we’re creating.  Some products or solutions require us to use different methods.

So, what did I talk about?  I had three hours to fill!  Below is a quick summary of what I considered to be the highlights.  The participants might have different views.

Challenges

First of all, I asked the groups some questions to help them consider what they considered to be the most important or significant challenges that they felt they needed to address.  When you’re going head long into a development, I thought it might be useful to find a bit of time to step back and ask the participants about the problems that they were facing, and whether they might be able to share some advice about how to solve some of their problems and how to manage some of the risks that each project group might face.

Interaction design

Since the participants were creating prototypes, I talked a bit about the process of interaction design and the ideas of different types of prototypes (i.e. horizontal prototypes and vertical prototypes).  I also spoke about the necessity to consider the user, the task and the environment, since considering all these aspects are really important when considering the final usability of a system (and usability will fundamentally influence whether or not a product or idea is accepted).

Processes

You could argue that interaction design is all about process.  I also introduced the idea of software development processes, notably, agile development which emphasises regular and constant communication between both developers and stakeholders.  I made the fundamental point that constant communication is a necessity since software is an intangible product; the only way to make software real is to talk about it.  Agile methods facilitates that talking.

Testing

In some software development cultures (and each culture is slightly different), software testing can be an integral component, but it is a subject that can be very easily overlooked.  Software testing is a pretty big subject, covering a huge variety of different techniques and approaches.  When we move from the small to the large, we fundamentally need to make sure that things work as they should be (since if things go wrong, then our customers don’t get a good customer experience).  I spoke about two important aspects to testing (and highlighted a bunch of others).  These were: different types of usability testing, and test driven development.

Abstraction

Abstraction is, perhaps, one of the most important and fundamental concepts in computing.  An abstraction could be described as an essence of a concept which doesn’t contain any superfluous detail or ideas.  When our abstractions are right, our software becomes easy to work with.  Abstractions represent a really important way to manage complexity.  We need abstractions within our code because programmers can only deal with a limited amount of stuff and connections between parts of a program at any one time.

One approach to creating software is to create our code in different layers.  Software developers constantly use code libraries as well as consume data from other information sources.   When talking about abstractions I also introduced the idea of design patterns.  These represent templates of common solutions to coding (and software design) problems that have been shown to occur time and time again.   Coming back to the point of processes and the need for constant communication, if we can put a name against our various types of abstraction (which is something that the concept of a design pattern does for us), this can make the communication between developers a whole lot easier.

Version management

When you’re working with code things can get very complicated very quickly.  There’s multiple files, different versions of libraries, you might include a whole bunch of different graphics or change database structures or web services... and then the bugs start to creep in and give both you (and your customers) a whole set of headaches.

I felt that it was important to saying something about version control and configuration management.  When we’re in the zone of high productivity (when we’re at one with the problem and our tools), creating new products and services, we can quickly lose our own history in the path of continual change.  Version management systems (or whatever you choose to call them) enable some aspects of development history to be captured and saved.  One challenge that we need to be aware of is that the use of these tools requires discipline.

Technologies

To create any software of substance, you’ve got to use some technology that already exists.  If you’re creating apps, you’re going to use some kind of integrated development environment (which consists of programming languages, debuggers, code profilers, and a whole bunch of other goodies).  Another subject that I wanted to mention was that there is a whole set of other technologies that developers could use.

One really useful concept is the software framework.  In essence, frameworks can be considered as a set of high level abstractions that allow developer to more efficiently solve common problems.  A framework can allow you to work more quickly (and hopefully more efficiently) by building on the work of other developers.  Two challenges include: figuring out which framework to choose (and whether it really would help you or not), and then understanding how a framework might work.

Another broad set of technologies that developers might utilise is web services.  Web services can now be used to store data and host applications.  Rather than having to manage their own servers and systems, an app developer might be able to use services that have been developed and deployed by other companies.  The challenge lies in figuring out what they are and making choices between different possibilities.

Community

In terms of software, the word community can be interpreted and understood in a number of different ways.  There might be a user community or a developer community, for instance.  You might want to share information about an emerging product through blogs and direct interested users to these updates through Twitter updates.  My point was that community, whatever form this might take, is fundamentally important.  Although technology is a necessity, technology won’t develop, change or improve if there isn’t a community of users or developers that are keen on using or enhancing a system.

Another notion of community lies with the area of open source software.  I understand that during earlier parts of the academy, students were introduced to different types of business models.  Some business models work through the use, application and development of open source software.  In some situations, open sourcing a development might be a part of a wider strategy.  If so, then it is fundamentally important to consider how to support and nurture a community that makes use of any software (or service) that is made available to others.

A final connection to the notion of community that came to mind was the importance of partnerships. Creating effective software and services is something that requires a lot of specialist skills and expertise. I remember one story from a HEA event that I attended some time ago.  I remember being shown an example, a collaboration between a graphics artist and a programmer, that led to the development of a really nice product; an interesting and playable mobile game.  A fundamental point was that sometimes, the best work that we do is when we work with others. 

Reflections

A personal reflection is that putting together these series of talks seemed to take up quite a lot of time, but it was pretty good fun thinking about what to include and what not to include.  I asked myself a really simple question, which was, ‘if I was there, being a delegate as a part of this programme, what would I really want to know?’  In retrospect, I fear I might have perhaps crammed in too much material, perhaps covering too many ideas or too many technologies in what was a very short space of time.  On the other hand, I think this was the point of the programme: to introduce people to new concepts and ideas, and to allow those on the programme to be fundamentally challenged.

One thing that struck me was that some of the teams gave the impression that they needed more developers; more people who were able to use the software development environment to create new products.  If you’ve never seen an integrated development environment before, the learning curve is practically vertical - it takes time to appreciate their intricacies and idiosyncratic ways.   Three weeks is an impossibly short time to come up with a new innovative idea that actually does something if working with technology isn’t something that you do all the time.

Since I attended the programme during the third week, I wanted to positively tantalise the participants.  I wanted to say to them, ‘you know, all this tech that you’re playing with, and all these cool prototypes that you’re creating using tools that you’ve never used before? Well… this is only the beginning – there’s a whole bigger world of software tech out there ready for when your ideas and inventions become real.’  I hope I managed to expose some of that bigger world of software to some of them.

Permalink Add your comment
Share post
Christopher Douce

Google: celebrating the UK's computing heritage

Visible to anyone in the world
Edited by Christopher Douce, Monday, 28 Oct 2013, 13:37

On 1 July I attended an event at one of Google's offices in London to celebrate the UK's computing heritage.   The event was in five parts.  The first was a panel discussion about the very early days of the internet. This was followed by the screening of a short film, a presentation by Tilly Blyth about the Science Museum, some information about the national computing museum and the reconstruction of a computer called EDSAC, followed by a closing Q&A session.

I was immediately struck by the names of some of the speakers; people who were and continue to be fundamental pioneers of the internet.  During the event I made quite a few notes, only to later discover that the parts of the evening had been recorded and made available on YouTube.  So, if you're interested, do go and visit the links that are featured in this quick blog.  They're certainly worth a look.

The history of the internet

The first session, a panel discussion, comprised of Roger Scantlebury and Peter Wilkinson, from the National Physical Laboratory (NPL), Peter Kirstein (Wikipedia) from UCL, University of London, and Vint Cerf (Wikipedia) from Google.    You can view this really interesting discussion by going to the video recording on YouTube.

For sake of completeness, however, I'm also going to leave you with some of my edited notes which more or less reflect the bits that piqued my interest.  There were occasions where that I became so engrossed in the discussions that I forgot to take notes!  So they are, by necessity, very course and incomplete.  I recommend the video over than my notes.

 As soon as the discussion started, I started to remember stuff that I had read in various histories of the internet.  Donald Davies, who worked at NPL initiated a project that had intended to be national in scope - in some ways, similar to the Arpanet.    NPL has played an important role in the history of computing (and the internet).  Alan Turing moved to NPL to work on the ACE computer (Wikipedia), after spending time at Bletchley Park and working on voice scrambling systems.  This led to the development of the English Electric DEUCE computer (Wikipedia).

As an aside, I was really interested to learn that the NPL chose to make use of a Honeywell DPP-516  (Wikipedia) as the basis for some of their networking designs.  This happens to be the same machine that was used as an Internet Message Processor (Wikipedia) in the Arpanet project.  (It also turns out that the contractor that developed the IMP, BBN, visited NPL - interesting stuff!)

Peter Kirstein spoke about how he and how UCL became involved.  Politics, of course, proved to be a fundamental issue.  ARPANet was connected to a seismic array based in Norway called NORSAR which could be used to detect soviet nuclear tests.  Vint Cerf made some really interesting points - that the challenges were mostly bureaucratic ones rather than about technology.  Getting people to communicate is harder.  Like I said: the video is better than my notes!

LEO: Lyons Electronic Office

I've known of the LEO computer for a very long time, but it isn't a machine that I know too much about.  Google has sponsored the making of a film to celebrate the the LEO computer (YouTube), which is certainly.  I was very surprised to see a number of the participants in the film in the audience.  The underlined how recent this history is, and how phenomenally quickly technology continues to move.

Science Museum: Information age gallery

Tilly Blyth, from the Science Museum, London, spoke about the development of a new 'information age' gallery.  The aim of the gallery is to celebrate last two hundred years of communication and information technologies (I hope I've got this right!)  Tilly described its narrative approach; the museum has chosen twenty one different stories.  (I've made a note of a four)

The first is an exhibit of the last manual telephone exchange that was used in the country.  This physical artefact has the power to not only convey changes in technology but also the changes in work practices.  Another exhibit relates to the LEO computer, which I'm sure will be both interesting and enchanting in equal measure.

Some current technologies have their own interesting histories.  There's also going to be an exhibit about the global positioning system.  Commerce and information can now be more readily connected to physical locations.  I was reminded of these new apps where you can hail a taxi by pressing a button on your phone.

The final teaser was a mention of an exhibit that related to how technology was consumed and used in developing countries, such as Cameroon.  We can so easily get wrapped up in our own worldview that we can easily forget that information and communications technology has a global impact.  We were told that the museum was working with an anthropologist with a view to trying to understand how devices are used in different cultures.

I've taken a note of the phrase, 'stories of contrast'.  I'm looking forward to its opening.

EDSAC Reconstruction

David Hartley, the director of the National Museum of Computing at Bletchley Park spoke about the history of the museum.  David spoke about significant machines, such as the Harwell Dekatron computer and the Colossus reconstruction. He also touched upon the role of the British Computer Conservation Society emphasising its importance by saying that 'there is nothing so boring as a dead computer'.  David also mentioned that there were parallel cultures to the museum; one that related to the more traditional role of a museum and one that related to machine reconstruction (and preservation).

The second film of the day was entitled EDSAC - A cultural shift in computing (YouTube).  This video described a project to rebuild a historic computer.  It's certainly worth a look if you're interested.

Closing session

The opening question, to Vint, was 'did you have the notion that the internet would change the world?  What were you trying to achieve in those days?'  Vint spoke about a range of different things, and mentioned Douglas Englebart's mother of all demos  (YouTube) and other influences.   Vint also speaks about IPv6, space travel, the history of TCP/IP and ubiquitous computing.  The question and answer session has also been recorded (YouTube).   Some really great questions!

Reflections

One thing that struck me was how many people attended the event.  I was amazed!  Another thought is that it really did feel like a celebration.  I was also amazed to see some of the people who featured in the films that were screened sitting in the audience.  This reminded me of how close we are to our own history, and also how we are all wrapped up in it too. 

When we're in the middle of change we can't easily see the rate that it is happening.  Events such as this one helps us to step back and realise how far we've come in such a phenomenally short time.  A really good point was that whilst the technology is, in its own right, pretty interesting - it's the human structures and the politics that have to be negotiated to really allow things to be work.  Arguably, these represent the tougher challenges.

We have a reflexive relationship with technology.  We make technology by working with people.  When we've made something, technology has a potential to change us too.  An implicit challenge that each of us face is to understand and acknowledging the extent of these changes.

Permalink 1 comment (latest comment by Patricia Stammers, Thursday, 18 Jul 2013, 10:28)
Share post
Christopher Douce

HEA Workshop: Teaching and learning programming for mobile and tablet devices

Visible to anyone in the world
Edited by Christopher Douce, Monday, 3 Mar 2014, 18:44

On 25 June 2013, I popped over to the London Metropolitan University to attend a HEA sponsored workshop that was all about how to best teach the programming of mobile devices.  My role there was to present something about an OU module that I help out on: TT284 Web Technologies, but I'll be saying a bit more about that in a little while.

Yanguo Jing, from London Met kicked off the day by talking about the twenty credit MSc module that he leads.  Yanguo said that his module is strongly connected with industry and various technology vendors and important themes are that of innovation and enterprise.  Importantly, students have an opportunity to carry out research themselves, create their own projects, develop their own apps and present their own findings.  One way that they do this is by making their own videos (which is also a great way to create evidence which can be contributed to assessments).

Yanguo also mentioned something called the Wow Agency. One of the important points of having a more direct connection with industry is that students get more immediate exposure to demands from industry.  This was thought provoking stuff.

Teach the future, not the past: Blackberry 10 development

Luca Sale and Simon Howard gave the first of two vendor presentations.  I'll put my hand up and say that I know next to nothing about developing applications for Blackberry devices.  In fact, I don't think I've ever used a Blackberry device other than to scroll through a message, when a friend briefly gave me their device to look at!

This presentation was all about developing for a new device, the Blackberry 10.  I have heard bits and pieces about this, but the new device has a totally new operating system called Z10.  Interestingly, it is based on an operating system called QNX (Wikipedia) (which I had vaguely heard of before).  Basically, it uses a microkernal architecture (which means it has a way to enforce stronger separation between the hardware and the main operating system that runs a device), it's pretty small, and is used in a range of different embedded systems.

Apparently, there are number of Software Development kits (SDKs) which means that it's possible to take an existing Android app and port it to the Blackberry (and have it deployed to users via the Blackberry equivalent of an app store).  The SDKs that were mentioned included Qt, HTML 5, Blackberry native, Adobe Air, and Java Android Runtime.

There was a quick live coding demo of how to create apps using the HTML 5 framework.  Other languages that might be used to craft code included Javascript (in conjunction with HTML 5), C++, and Java (as far as I understand).  At the end of the presentations, Nafeesa Dajda described the Blackberry Academic Programme (Blackberry).

Microsoft devices and services

Lee Stott continued the vendor specific part of the day by making a Microsoft themed presentation.  Microsoft, of course, has been investing significantly into the mobile devices space.  Not only do they have Windows phones, but they (of course) also have their Touch PCs.  So much so, that their new operating system (Windows 8) aims to create an experience specifically for tablet devices.

Lee talked about software eco systems and mentioned that services (as well as devices) are important too.   Services can also be thought of in terms of cloud services, and we were told that the cloud was becoming more and more important.  Since data is stored elsewhere, users have the potential to move between different devices and still have access to their documents and data, thus enhancing the user experience.  

One of the most interesting part of Lee's talk was where he spoke about the Microsoft Azure services.  I have to confess that it's been quite a while since I've been a Microsoft developer (in the intervening years I've done some PHP and coding using open-source frameworks), so it was useful to learn what the company has been up to and what services they are offering.

One of the challenges that I've always puzzled over is if you run your own tech company, how you might go about running and maintaining your own servers and databases.  System administration is a necessary, important and essential evil: getting to grips with real kit and devices is important, but is a detailed technical specialism in its own right.

If I've understood this correctly, Microsoft can host a virtual server which then can host your own database.  I'm also assuming that if you want, you can also write your own web services to do whatever magic stuff you need to do, which can then be consumed by users of mobile devices (or any other kind of client).  Customers of this service are then billed per minute of processor time.  I can see the benefits; server plant depreciates quickly and keeping them maintained is always going to cost money.  I find this approach to hosting and consuming data really interesting, especially since it offers an approach to devolve risk to a third party.  Of course, there are a number of competitors (Wikipedia) in the cloud services arena.  This whole area seems to be a new subject in its own right.

Just in case you're interested, here's a couple of links I've gathered up: the main Microsoft Faculty pages, the UK faculty connection blog, and a link to the Azure education blog.   Another link is DreamSpark which seems to be about giving students and institutions access to some of the latest tools and technologies.

TouchDevelop for Windows Mobile 8

The next talk was by David Renton, who is a lecturer in Computer Games Development.  David introduces a platform called TouchDevelop (Microsoft website) which used to be a Microsoft Research project. TouchDevelop is a programming language that has a graphical feel.  Programs that are created using it have an appearance of a textual language, but elements of code can be created using a series of menus (as far as I can understand).

The software that you can create using TouchDevelop can be run on different mobile devices.  In some respects, TouchDevelop occupies the same space as Scratch (MIT website).  David makes the point that it's difficult to create good games in Scratch.  I can (personally) neither confirm nor deny David's assertion, but my own view is that Scratch is a fun and useful environment which allows users to escape from the tyranny of syntax, whilst at the same gradually introducing users to different (and essential) programming constructs.

What was really interesting was that TouchDevelop contains cool stuff, such as a physics engine.  By providing such a facility, I can certainly see how and why such an environment could be particularly interesting and engaging.  Again, for those who are interested, David has a blog called Games4Learning.  A final interesting point is that TouchDevelop runs in a web browser, so will work on different platforms.

Shorter presentations: Lua and Corona, Digital Summer Camp

Ian Masters gave a short presentation entitled, 'teaching cross-platform mobile development using Lua and Corona'.  Corona (website) is a software development SDK and Lua (Wikipedia) is a programming language.  Like TouchDevelop, Ian demonstrated the use of an integral physics engine.  During the follow on discussion, there was quite a bit of talk about the Unity Engine (Wikipedia), which I've heard mentioned at a number of other HEA gaming and mobile events.

Martin Underwood talked about Digital Summer Camp which is an event where universities, colleges, industry vendors and other organisations have come together help to inspire young people who are interested in technology.  The Open University is also one of the 'digital skill leaders'.

iPhone game development at Robert Gordon University

Gordon Eccleston has been teaching the development of apps for quite some time.  He gave a short talk on what works and what hasn't worked.  Gordon introduced a new term: a flip classroom!  I hadn't heard this term before, but apparently this is where students do some preparatory work at home to prepare for tutorials (I think I've got that right!)

Gordon spoke about how things have changed.  These days students invariable have their own devices.  One difficulty is that vendors are always changing their devices, which means that lecturers face challenge in terms of an inability to control in their own environment.  This said Gordon does have access to some iPod Touch devices, allowing code created using the XCode platform (the environment used to create iOS applications) to real devices.

Gordon also mentioned that the school had access to the Unity3D engine.  This gave way to an interesting discussion about the difference between games programming versus games design courses.  I've also made a note that when it comes to submission of course work, submission to an apps store represents one judgement on quality.  When it comes to further assessment by the lecturer, one approach is to ask students to create a screen cast.  Assessment, I seem to recall, is a perpetual challenge (especially with the continual changes in technology), as is how to provide both teaching and resources through a web based environment.

Mobile apps development: enhancing student employability

Sally Smith and Scott McGowan, both from Edinburgh Napier University gave a short talk and presentation on the importance of employability skills.  Sally, who is the head of school, said that employers value relevant experience, want to see applicants who have a relevant degree, and have good soft skills. 

Faced with the necessity to demonstrate employability skills, it was argued that it would be useful if students could create something (say, an app, or some other related project) that can be both added to a CV and talked about in an interview.  Sally also talked about the importance of industrial experience and how her institution and school tackled this issue.

Teaching and assessment strategies in mobile development

David Glass teaches mobile development to second year undergraduates at the University of Ulster.  Students can create apps for the Android platform with Java using Eclipse.  Important parts of the module that I've noted down are subjects such as user interface design, data persistence and networking.  There is also a period of self-study where students are to gain an overview of mobile devices.

Challenges include teaching of programming and understanding what to assess and how.  The assessment approach that David mentions sounds really interesting.  Students are required to address legal, ethical and social issues.  They are then required to develop a basic app before moving on to creating something that is more advanced.  A basic app might be something such as a simple calculator or a measurement converter.  

Interestingly, a more advanced app might be something called a 'my run tracker' app.  David made the important point that the task of creating apps lends themselves to more open-ended assessment and group work.  Taking this approach has the potential to encourage creativity and help with motivation.

Design designers, don't program programmers

Lindsay Marshall, from the University of Newcastle, gave an impromptu talk that described his own ten credit postgraduate module and connected with many of the earlier debates.  At the end of his module, students are required to submit a portfolio.  Relating to the challenges of assessments, students were allowed to choose whatever platform they wanted, and choose whatever problem they wished to solve.  Students were encouraged to produce a design log and to present some kind of demonstration.  Moving forward this may take the form of a video presentation or recording.

Lindsay made the important point that it is also important to take the time to look at the code, as well as the final product.  Another component is the writing of a reflective essay, to describe what was learnt during the project.  Interestingly, there are no lab sessions.  Instead, Lindsay mentioned the importance of crit sessions, which is an important technique used in design.

What was really struck me from Lindsay's presentation was something that was also pretty obvious: that there are significant connections between the design disciplines and software development.  Both are fundamentally creative subjects, and both require people to understand the inherent nature and characteristics of problems.

Web technologies

And finally, it was my turn.  During my slot I spoke about a new Open University module called Web Technologies (TT284, Open University website), emphasising the point that there are so many important technologies that underpin the use of mobile technologies and devices. 

TT284 is interesting in a number of different ways.  Firstly, is uses a set of case studies of increasing size.  Students move from understanding how to create an app for a small club or society, through to understanding what might happen as a part of a software development company.  Students are then introduced to 'software in the large' (or sites that have incredibly high volumes), and what practical issues might need to be addressed.

When it comes to mobile technologies, drawing on a case study, students are asked to create an app for an Android device using MIT App Inventor (MIT website).  App Inventor is a graphical programming language, where code can be moved to real advices.  One of the challenges for any module that aims to either teach mobile technologies is the way that technology changes so quickly.  A really good aspect of this particular module is that it also addresses a good number of fundamental and really important standards and technologies.

Reflections

I learnt quite a lot from the vendor presentations and it's always useful to hear about the industrial perspective, particularly in a field that is moving so phenomenally quickly.  Whilst it's great for academics to learn what industry is getting up to (and you might argue that this is a thoroughly essential part of the job description), the presence of vendors links to an implicit battle for the hearts and mind for developers.  Users choose devices and technology that allows them to do cool stuff.  Cool stuff is created by developers.  Developers, in many cases, come from universities.  Taking this even further, developers are employed by industries who ultimately want people to be skilled in using particular software infrastructures and ecologies. 

Things have changed since I first started to go to these mobile technology events.  There are now many more devices than there were before.  The devices themselves have changed - they have more memory and power, and on the horizon there is a new generation of faster mobile networks.  By the same token, there are, of course, new tools, development environments, frameworks and libraries.  Educators are faced with the challenge of what to teach.  Some educators choose particular platforms, whereas others leave this decision entirely up to students.

When it comes to pedagogy, project and group work appears to be fundamentally important, particularly when it comes to developing employability skills and creating artefacts that can be presented to potential employers.  Keeping things open (in terms of either platforms or the problems that can be solved by the application of mobile technology) can present some challenges when it comes to assessment.  There seems to be some consensus in terms of asking students to produce videos of their working apps might be a good approach.

Making a decision about what platform to use or to develop for isn't an easy one.  When I was a student I was once told by a faculty member that 'you really need to know how to use all types of technology'.  His point was that you will more readily be able to move between one platform and another.  In doing so, you'll gain a degree of flexibility that will allow you to appreciate how things might be done in different ways.  This is a perspective that has stuck with me and one that is important since the platform that you're using now will eventually become obsolete in a couple of years' time.

When it comes to mobile technology, everyone is trying to figure what things we should be teaching and what the best approaches for teaching might be.  When we're dealing with an industry that is moving as quick as it is, these kind of events can be useful in terms of making connections and putting a marker in the ground whilst saying, 'this is how we do things today'. 

Permalink Add your comment
Share post
Christopher Douce

Making the history of computing relevant : Day 2

Visible to anyone in the world
Edited by Christopher Douce, Monday, 28 Oct 2013, 13:37

Session: Putting the history of computing into different contexts

The voice of the meachine: Tom Lean

Tom Lean from the British Library kicked off the second day with a presentation about a project that he is currently working on: An oral history of British Science (blog).  An important part of this project is about the history of computing.  A part of Tom’s role is to travel around the country to interview different people.  Each interview takes between 10-15 hours in length.  They are biographical; people are encouraged to talk about themselves, their environment, tools and procedures.

This lifestory approach to interviewing allows us to get a sense of the person themselves, their mannerisms and how they sound.  It allows us to have a more direct connection with the subject and those people who played a part in its development.  The longer interviews are edited down to highlights, which will then be made available through the British Library History of Science project website. I understand that researchers will be able to gain access to the entire interviews.

Tom gave us a taste of the interviews by showing us a clip of Ray Bird taking about the HEC1 computer (YouTube).  (For the interested, there’s also an Oral History of British Science YouTube channel).  The second clip was an interview of Mary Lee Berners-Lee (Wikipedia) who spoke about ‘what’s fun about programming’.

All in all, a great talk and a great initiative.  As an aside, I remember discovering another archive of oral histories of computing (University of Minnesota), which have been collected by the Babbage Institute.  Different interviews by different people (and institutions) are likely to explore and expose different issues.  Both archives are invaluable to present and future researchers.

Telling the long and beautiful (hi)story of automation: Marie d’Udekem-Gevers

Marie took us on a tour of devices that relate to the history of computing, offering us a slightly different perspective.   Computing can also be understood in terms of mechanisms, mechanisation and automation, which eventually takes us towards data processing.  We can also think of the history of computing in terms of generations, but there is also an important pre-history that we need to be aware of too. 

When we think of the pre-history of computing we might also consider mechanical and water clocks, the development of the Jacquard Loom (Wikipedia).   There is also the work of Pascal (who was mentioned earlier) and Babbage (whose trial machines are exhibited within the Science Museum).  Marie introduced a simple distinction: internal versus external representations (and memory).

The difference between the two is that we can easily (and obviously) see external representations (of information), captured within cards, or as notches on a rotating wheel.  Modern computers, of course, make use of hidden internal representations.  The difference between internal and external connects to the notion of the immediately understandable and tangible versus the hidden and abstract nature of software.  This connects to a wider (and later) debate about what we can gain by exhibiting the more recent generation of computing devices.

Competing histories of the internet: Christopher Leslie

Christopher Leslie (PPY homepage) teaches the history of the internet technology at the Polytechnic Institute of New York.  During his talk, Christopher mentioned a couple of books – one that I have read, and another one that I had never heard of before.  The first is called, ‘where wizards stay up late’ by Hafner and Lyon.  The second was called ‘NERDS: a brief history of the internet’.  (There are, of course, a number of other books about the history of the internet, such as one called ‘A brief history of the future’ by a former Open University colleague). 

A couple of comments that Chris made echoed some that had been made during the previous day; that it is very easy to take a determinist view of the history of technology; that developments occur gradually and in a number of determined steps.  When it comes to the history of the internet, there have been a number of different systems and innovations, emerging from different countries and locations. One interesting note that I made was the development occurs through a series of transitions, that technology is moved from one context to another.

Chris mentioned the work of Donald Davies at the National Physical Laboratory, Teddington, and an important Association of Computing Machinery conference in 1967 where two people who had never met each other presented very similar ideas.  In fact, I’m read that the word ‘packet’ (as in the phrase ‘internet packet’) comes from Davies’s work, whereas the protocols that make the internet work come from the work in the US (of course, I’m impossibly simplifying a whole swathe of really important history and technical stuff here!)  Chris also mentioned the French network Cyclades (Wikipedia) which has also influenced the development of ‘the internet’.

I’ve also made a note of his point that the connections between people and communities are really important.  Although defence funding was necessarily important, it is the connections between people and a culture of openness that exists within an academic community that helps developments to occur.  Another really important point that I’ve made a note of is that we ‘need to fight determinism in the classroom!’  I totally agree. 

My ‘take away point’ from Christopher’s presentation was that things are a whole lot more complex than they really are; there isn’t one history – there are many.

Session: Games

I was initially surprised to see a session on games in this conference, but the reasons why (and the importance of its inclusion) soon became apparent.  This session resonated a lot with me, since I was once an avid player of games during the ‘cassette era’!  There is also an increasing awareness that is a whole history that relates to the use of computers in entertainment.

Games and gaming can also represent compelling museum exhibits; they can be potentially used to draw people in to other exhibits.  This is why this session also has the subtitle ‘games – and it’s potential as a Trojan horse’. 

The popular memory archive: Helen Stuckey

Helen Stuckey, who travelled all the way from Australia, talked about a project that was all about collecting and exhibiting player culture from the 1980s.  I never knew this, but apparently there was quite a unique gaming culture in Australia and many games were developed locally due to import restrictions. 

The popular memory archive is a web portal.  Gaming isn’t just restricted to the games as artefacts; there is a wider and richer picture of use and consumption that is important too.  The portal allows visitors to save or record player memories.  In the 1980s games were often the first way that people came into contact with computers (this was certainly my own experience).  I have my own memories of walking to a newsagent and agonising over which game to buy with my own pocket money.  This walk, and the action of loading the game into my Atari computer in my cramped bedroom could be considered as a part of my biography.

Other aspects of computing history include the history of production and the role of hobbies.  Helen showed us a logo of the ‘Melbourne House’ software company, which certainly remember from my teenage years.  At the time, it had never occurred to me that this was an Australian company.

One of the challenges lies with choosing what artefacts and issues to focus on.  Out of a potential 900 titles, 50 game titles were chosen.  Some of the themes that I’ve noted include businesses, rise of the bedroom coder, legal issues, and the role of the collector.

Fan sites, such as Hall of Light (a database of Commodore Amiga games) and Word of Spectrum also have an important role to play in terms of documenting history.  (I started to look into both of these sites, and quickly found hours of my life had disappeared!)

I found the idea of a web-based resource really interesting.  Just as we have citizen science projects, such as Galaxy Zoo, I can see that there is scope for participative, or citizen history sites.  When there are so many memories and products and experiences out there, crowdsourcing is undoubtedly a powerful approach.  I’m enthusiastic about old games, and after a quick search around on the web following Helen’s presentation, I can clearly see that I’m not alone.

Introduction of computer and video games in museums: Tiia Naskali

Tiia’s presentation was about a physical exhibition rather than a virtual one.  Tiia spoke about gaming from the Finnish perspective and the hobbyist era between 1980 and 1990.  (On reflection, this is an incredibly short period of time in which a whole lot happened). 

Connecting to some of the points that Helen mentioned, Tiia made the point that games are a part of life histories. They are important within popular culture and the work of that period can be shared and appreciated by a newer generations.

What struck me as really interesting was Tiia’s summary of different game exhibitions that had taken place across the world.  One of the most prominent was Game On which apparently began at the Barbican, London. 

Gaming exhibitions still will continue to have resonance today.  On the month of this conference, the latest generation of games consoles are receiving a lot of attention: the Xbox One (Wikipedia) and the Playstation 4 (Wikipedia).

This session led to questions relating to the challenges regarding digital preservation, i.e. whether we should be considering how to preserve digital worlds.  For those who are interested in this project, more information can be found by visiting a project website that also contains a link to a final report. Other points raised during the question and answer session related to the authenticity of gaming experience and the potential societal impact of the use of games, which is, of course, the subject of on-going research.

Session: The importance and challenges of working installations

Computer Conservation Society – Its story and experience: Roger Johnson

Roger Johnson introduced the Computer Conservation Society (society website).  It wasn’t an organisation that I had heard of before, but I’m so glad that I heard about it.  The society was the brain child of Doron Swade (Wikipedia), former curator of the science museum (who has written a cracking book about the trials and tribulations of building Babbage’s Difference Engine no 2).

The society is a joint venture with the Science Museum and the British Computer Society and currently has approximately 800 members.  It has a number of guiding principles.  Firstly, membership is open to all, and it is free.  It doesn’t own computers but has, instead, close links to museums.  It also has a small rescue fund.  This can be used to help preserve historically significant machines that might be at risk of being disposed. 

During Roger’s talk, I made a note of the phrase, ‘today is tomorrow’s history’.  Given that there is so much that is going on at the moment a challenge lies with understanding what should be captured. 

For those who are interested, the CCS also has its own newsletter, called Resurrection (CCS website).

Museums – what they can and should be doing : Charles Lindsey

Peter Onion, who works on the Elliott 803 (Wikipedia) at the National Museum of Computing (and probably does a whole range of other things too!) temporarily stepped in for Charles Lindsey (who was able to attend the question and answer session).

Peter, using Charles’s words spoke about the objectives of a museum.  Two objectives are to inform the public and to help serious researchers.  Peter argued that perhaps there is a third, which is to preserve (and to develop) the skills necessary for the maintenance and operation of the objects and to preserve the perspective of those who created them.

One really interesting (and important) point is that museums are about history, not fashion.  One question was whether computing history ended in 1980?  This echoed an earlier point that some modern computers can appear to be visually uninteresting; their mystery and complexity is hidden within integrated circuits.  Working (historic) machines have the potential to add and expose depth and may be able to more directly expose the details that make things work.   There is also the question of what stories we may tell, questions about what issues earlier engineers (and maintainers) may have faced, methods they used and tools they applied.

History, nostalgia and software: David Holdsworth

We all know that hardware without software is useless.  A laptop without an operating system or application software becomes a pointless and immutable mix of plastic, glass and electronics.   Software is the stuff of computing (you might almost call software its ‘oxygen’), but so much of it is lost.  One of the most obvious reasons is that software is inherently invisible, and increasingly so.  This raises the important question of how to go about preserving (and also potentially exhibiting) software.

David showed us an interesting couple of web pages; an implementation of the Algol-60 programming language (Wikipedia) for a KDF9 computer (Wikipedia) demonstration through a web page.  Those who know something about the history of programming languages, Algol is a really important language.  Think of it as a latin of programming languages; it’s not used much these days but you can see strong echoes of its design in programming languages of today, such as Java.  (Being more of a software guy than a hardware guy, I felt that more might have been said about the history of languages).

The fact that we can write programs using an old language through a web page is really cool.  Such an approach allows us to sample the past and get a feeling for how things used to work.  David argued (or I have noted down) that we should ideally be able to browse and analyse source text, see software working and sample user experience.  I agree with him.

When it comes to digital preservation, David made the point that we need to read the original media and save it to new media, to keep a byte stream and create software to manipulate and work with these byte stream.  Not only is the software important, but so is the documentation too.  One way to deal with the documentation challenge is to scan existing manuals.  Documentation, however, can be flawed and incomplete.  The best representation of how a machine worked is an emulator.  A well written emulator becomes a description of how hardware operates.

On the subject of emulators and software, I asked myself a thought experiment of ‘what kind of exhibit would I create if I wanted to present something about the history of software?’  Some random thoughts include: the presentation of a command-line interface (echoing the use of a teletype), followed by the use of DEC terminals.  This would then be followed with a hands-on emulation of a Xerox Alto, followed by another emulation of an Apple Lisa (perhaps even an actual machine).  This could then be followed with a really early version of Windows, and then concluding with a touch screen tablet interface (running either iOS or Android).  All these presentations got me thinking!

The Teenage Baby: Chris Burton

I visited the Museum of Science and Industry (MOSI website) when I was looking around Manchester before choosing to study Computer Science there as an undergraduate.  Chris’s presentation has underlined that a repeat visit there is now long overdue.

Manchester Small Scale Experimental Machine (SSEM), also known as the Manchester Baby (Wiki pedia)was designed by Williams, Kilburn and Tootill and is considered to be the first stored program computer in the world.  Chris gave a description of a programme to reconstruct a replica of this very first machine.

The reconstruction was completed in 1998.  Chris told a fascinating story of the role the machine had played within the museum.  It was a story of movement and construction, of relocation and restarting.  The SSEM has now been in operation for fifteen years and it is important to remember that the original machine only ran for only three.

Chris emphasised the very important role of volunteers.  A volunteer can act as a guide, introducing the different aspects of the machine to visitors.  Chris told us of a story of a volunteer who held aloft a Williams tube and said, ‘this is what a flash drive looks like in 1948... and it only holds a millionth of a gigabyte’, raising curiosity and grounding the past in the technology of the present.

Physical reconstructions not only embody history, but also they represent and echo some of the processes that occurred as a part of the development of a machine.  By creating the past, we can not only develop skills, but we can uncover challenges that the early designers and users faced.

Session: Reconstruction stories

Reconstruction of Konrad Zuse’s Z3 : Horst Zuse

One of the truths in the history of computing is that there were a number of parallel developments happening around the world at the same time.  In Britain there was the work at Bletchley Park, in the United States there was the work at University of Pennsylvania, and in Germany, there was the work of Konrad Zuse.

Horst Zuse, who made a presentation at this conference, is Konrad’s eldest son.  I have known about Zuse’s work for a long time, and heard that his very early machines were destroyed in World War II.  What I didn’t know was the extent of Zuse’s creativity and innovation.  His early machines, the Z1, 2 and 3 used binary floating point numbers.  Z3 can be considered to be one of the first functional programmable computers in the world. One of the differences between the Z3 and other early machines it made use of electromechanical relays.  Z3 apparently used two and a half thousand  of the them, with six hundred being used for the calculating unit.

In 2008 Horst proposed building a new version, or a reconstruction of the Z3.  The new machine could be used to teach the principles of computing (addressing the same issue that the computing devices of today are more difficult to understand).  This reconstruction, however, was to make use of modern telecommunication relays, but this doesn’t discount the challenge of creating such a machine.

Horst talked about the delivery of the relays, the racks in which they were housed, the construction of memory and some of the challenges regarding the input devices (if I remember correctly).  It was initially located in the Technical museum, Berlin, to accompany the Z1 reconstruction that took place between 1987 and 1989.  It’s final destination is likely to be the Konrad-zuse-museum in Hunfield (museum website).  The museum looks like a cool place to visit!

There were two surprises in store for me.  The first was that Zuse created a binary calculating engine whilst independently rediscovering some of the principles that had been previously discovered by George Boole.  Secondly, during the question and answer session, a delegate asked about something called Plankalkül (Wikipedia).  I had never heard of this before.  In essence, Zuse proposed the design of a programming language decades before it became practically possible.

EDSAC Replica Project : David Hartley

Every ‘first’ is qualified.  Zuse’s machine is considered to be the first programmable computer, the Manchester Baby could considered to be the first solid state computer, whereas EDSAC (Wikipedia) is considered to be the first computer that went into regular service with a specific intention of solving problems for its users.  I didn’t know this, but EDSAC is also attributed to have helped three Nobel Prize winners.

The EDSAC reconstruction (project  website) started in 2010, following a conversation with a co-founder of ARM (which designs the processors that are used in smartphones and a whole host of other devices).  The project aims to have a working machine by 2015.  As well as creating a machine, corollary objectives include the desire to create a new archive of related materials and resources and, importantly, to create expertise.  These objects connect nicely to points that Peter Onion made when he was talking about the role of museums; that the very act of rebuilding (or preservation) actively enables past skills, tools and techniques to be rediscovered (and new approaches to be reapplied).

The machine is to be housed at the National Museum of Computing at Bletchley Park.  It’s interesting that there will be two early machines with very different memory technologies: the use of a cathode ray tube, and mercury delay lines.  I understand that there is a connection with the Dollis Hill research centre somewhere along the way, but I don’t (yet) fully understand the details just yet.  This just underlines the point that there’s always lots more reading to do.

For those who are interested, there’s a YouTube clip about the EDSAC replica project.

The Harwell Dekatron Computer :  Kevin Murrell

The Dekatron computer, or WITCH (as it is affectionately known), strikes me as a bit of an odd ball – but a very interesting one!  It was designed for (or as a part of) the UK Atomic Energy Research Establishment, Harwell, Oxfordshire.  Kevin told us that it was relay controlled, but it has an electronic arithmetic and logic unit (the bit that does all the calculations).  It also makes use of something called Dekatron valves which serves as its memory.

After spending life at Harwell, it was then moved to Wolverhampton and Staffordshire Technical College (which then later became a university).  Because of its move and role in education, it remains, perhaps the oldest original working computer in the world.

More information about this interesting machine can be found though the following YouTube video: The reboot of the Harwell Dekatron/WITCH computer.  The Computer Conservation Society also have a page about the WITCH (CCS website)

Capturing, restoring and presenting IRIS : Ben Trethowan

IRIS is an abbreviation for Independent Radar Investigation System.  Its role was to collect radar signals to record movements of aircraft.  Should there have ever been a mid-air collision the data collected by IRIS could have been used to provide key evidence for any investigation.  IRIS was said to have been built in the 1970s and ran until 2008 where it was decommissioned, which is an astonishing length of time for a single system.

Ben gave us some information about the technology.  IRIS was based on a DEC PDP11 that had been heavily customised.  Apparently the operating system had been customised too.  When it comes to computer conservation, the march of time can have an impact.  One of the challenges that Ben faced was regarding magnetic tapes.  Over time, oxidisation can occur, which means that the metal layer that is used to store all the data was starting to separate from the plastic layer.  An important part of IRIS was the use of high capacity data cartridges.  These too had started to degrade.  Rubber parts used as a part of the tape drives (or the cartridges) were beginning to perish.

As far as I can remember it, the previous owners of IRIS contacted the computer history museum and asked if they would like it.  Ben then got involved with the project to move the machine to Bletchley Park, working very closely with the donor organisation.  In doing so, he gained a thorough understanding of the role of the machine and the context in which it was used.

What struck me about Ben’s presentation was that he presented what amounted to a ‘good practice’ guide for computer conservation.  Ben’s talk was very clear; it was very interesting to hear all about the ‘other stuff’ that technical curators or ‘machine keepers’ need to consider or take account of.  Whilst a machine is interesting in its own right, understanding the context of use and the sharing of hard won expertise is invaluable in terms understanding how a machine works, its design and its broader organisational and cultural significance.

I’ve made a note (during Ben’s talk) that a good relationship with a donor organisation is important.   It also struck me that good computer conservation isn’t just about dealing with the computer and its software.  A computer forms a part of relationships between groups of people.  As soon as a computer moves from its original context to a new one it can easily become disembodied.  Understanding the human structures as well as the technical structures strikes me as a dimension that museums always need to be mindful of.

Reflections

The conference ended with a short panel session.    I have to confess to being pretty mentally tired at the end of the two days and I didn't take in as much at this point as I would have liked!  This said, the conference was just the right length; a third day would have been too much for me!

This part of the blog is a set of random reflections - nothing too controversial; just a set of thoughts on what struck me the themes were.  I’m sure that different people would have come away with a different set of themes based on their own personal interests.

One of the key themes of the conference was (perhaps unsurprisingly) the role of museums in the history of computing.  There are some fundamental challenges regarding preservation when many aspects of computing (and computer use) are intangible.  There is also a question of which stories to present and how we might present them, and how to we make what is sometimes abstract become visible to try to make it understandable.  One approach, of course, is to use guides or interpreters to try to inspire visitors and help them to understand abstract ideas and principles.  Grounding the role of machines in terms of their application or their wider social context also strikes me as being very important too.

Reconstruction of old computers featured heavily and this was a surprise (but in retrospect, this was more due to my own unfamiliarity of what was happening in this sector than anything else).  Reconstruction is a process where the actions both generates and reaffirms knowledge.  It also strikes me that it is a fabulous way to go about conducting research into some of the early designs and sharing expertise.

Another theme relates to the role of history and its relevance.  A number of speakers say that the history of technology or computing isn’t taught a great deal.  Computer history certainly wasn’t taught on my undergraduate degree and this is a shame.   I was also struck by the assertion that subjects such as computing are viewed as ‘ahistorical’.  This said, you scratch the surface and there’s a whole host of rich, deep and fascinating stories. 

It also was a real delight to inadvertently discover that those that had a connection with the actual history of computing were able to come along to the conference.  What also struck me was a sense of community, especially amongst those who have an involvement with the Computer Conservation Society.

A final work on what I got (personally) got out of the conference.  One of my research interests relates to how ‘place’ played a role in the development of computing, i.e. what happened and where.  I also hope to travel to different places where these innovations have taken place.  This, for me, will be a catalyst for adventure and learning.  In fact, I’ve already taken a couple of journeys and hope to do many more in the coming years.

One thing that I’ve realised is that there is so much history on my doorstep.  During the conference I was chatting to a former colleague who I was amazed to discover had a direct and immediate connection with a computer called LEO (Wikipedia), which was arguably the world’s first commercial computer.  (There was the UNIVAC in America, but I would have to travel quite a way to visit the places where it was created).  I know hardly anything about the LEO.  I feel that a whole new journey of discovery is just about to begin.

Permalink Add your comment
Share post
Christopher Douce

Making the history of computing relevant : Day 1

Visible to anyone in the world

Ever since I was a kid I've been interested in the history of computers.  When I was aged ten or eleven I would try to buy an issue of a pretty serious hobbyist magazine using my pocket money every two weeks.  Each issue was a part of a series that would make two really heavy books.  (I couldn't afford to buy very many of the issues, of course... I didn't have enough pocket money!)

In these magazines I remember seeing these old black and white pictures of a machine called ENIAC and reading about very early computers such as the Manchester Baby and the work of Zuse in Berlin, Germany.   These old pictures and articles have always stuck in my mind.  The past, to me, was interesting.  It was, in some way, another world that was there to be be explored.

This is the first of a series of two blog posts of a conference I recently attended at the Science Museum, London, on the subject of the history of computing between 17 and 18 June 2013.  More information about this conference is available through the conference website where you can find copies of the papers and presentations.  Google have also posted a page about the conference on their Google Europe blog.

My attendance at the conference occurred as a result of a random chat with one of the organisers about an old computer company called Elliott which once had its headquarters not too far from where I live.  This sounds like a random conversation - and it certainly was!  But I'm very glad it happened.

What I hope to do with these blog posts is to (briefly) summarise each the presentations (this is something that I do for myself from time to time, to help me to remember what happened).  One disclaimer is that I'll be picking up on the things that I personally found of interest, and I obviously can't do justice to every excellent presentation.

This said, I do hope to provide some links to some of the resources that some of the speakers mentioned, which I hope will be useful to fellow delegates, researchers and students alike.  A final disclaimer is that I'm only going to mention the names of the presenters who gave each talk (even though there were many other contributors) and that there's also a strong possibility that I may well inadvertently misrepresent or misunderstand things.  If I have done this (and you find this blog), then please do correct me by making a comment below.

Opening

The event was opened by Tilly Blythe, Keeper of Technologies and Engineering at the Science Museum, Arthur Tatnall, chair of the IFIP (IFIP website) WP9.7 History of Computing group, and Lynette Webb from Google.  Tilly spoke about some of the objectives that relate both to the conference and to the Science Museum.  These include the need to understand the audience and attract their attention, the use of compelling and engaging stories and the importance of objects that can inspire awe and wonder.

Session: The importance of storytelling in museums

Exhibiting the on-line world: Marc Weber

The first formal presentation of the day was by Marc Weber, who did a great job.  One point that I've made a note of is that it is very easy to overlook the fact that technology has a rich and detailed history.  There is always a back story.

Marc introduced us all to the idea of a hierarchy of exhibitability.  I immediately grasped what he meant: some items (or ideas) can be immediately understood and appreciated, whereas others can be difficult to present and grasp.  Exhibits can range from the personal and visual to exhibits that aim to present abstract ideas.  A lot of computing can be, by its nature, pretty abstract.  One way to get over this is to present concepts and ideas using computer screens - but could we do better than presenting information on large glowing rectangles?  How could we exhibit networking, for example?

One approach is to display physical artefacts, such as an original Interface Message Processor (Wikipedia) alongside current devices such as Cisco routers.  The challenge of exposing and exhibiting the internet to visitor 'is like trying to display the wind'.  The question about creating an exhibit about the internet reminds me of how everything (in terms of ideas, as well as devices) is connected.  To understand the history of computing we also need to understand the history of other aspects of technology, such as the history of telecommunications, for instance.

Narrative in the History of Computing: Tilly Blyth

I can remember the first time I visited the Science Museum computing gallery.  There was an actor who played the role of Charles Babbage.  He actor walked up to me and started to enthusiastically talk about his work.  Since I was then a shy twelve year old, I was having none of it - I just wanted to look at the exhibits; I was mildly traumatised by the actor's enthusiasm and he left demoralised.  Not quite an indelible scar, but an interesting memory that reflects one really interest approach that museums can take to make their collections come alive.

Tilly spoke (amongst lots of other things) about different approaches to exhibitions.   One of the problems with the chronological approach, presenting a gradual (and natural) progression from the past to the present, is that it suggests a degree of inevitability, or technological determinism.  A challenge with this approach is that this doesn't take into account the wider social issues and circumstances that brought about technological innovation and development.  Another point is that innovation happens in fits and starts, and there are many dead ends.  It's also the case that people remember stories, and one way to help with this is that the stories of people are important.

Tilly also spoke about the current exhibition about Alan Turing that celebrates his contributions and life, whilst also exhibiting a number of related artefacts.  This story telling or biographical approach strikes me as one that is understandable and compelling.

I didn't know about this, but there is going to be a new Information Age gallery.  (You can learn more about this through Tilly's blog). The gallery will expose, examine and celebrate, subjects through the eyes of those that were affected.  It will cover key communication technologies such as cable, broadcast, satellite, web and cell (radio) technology.  According to my roughly scribbled notes, it will feature something about the first communications cable that went across the Atlantic and will feature oral histories and video presentations.

At the centre of the exhibition will be something called the Rugby Tuning coil which was once used for transmission of very low frequency signals to submarines.  Such an object can connect to important subjects such as information theory and transmission.  After seeing a photograph of the coil I can assert that it is a striking and arresting object.  It appears to be one of those artefacts that is beautiful in not only its physical construction, but also in the sense that its design embodies the principles of technology that it utilities.

I've made a note that Tilly mentioned that there will be a series of stories.  There will be stories about the first information machines, such as Tommy Flowers and his role developing the Collosus, and the development of the Lyons Electronic Office (LEO) which is considered to be the first commercial computer in the world.    I understand that there will be something about the birth of computer networks.  A third story relates to the global information space, and a fourth is about computers for users (and being a tutor on a human-computer interaction module, this is a subject close to my heart).

Tilly's talk emphasised that narratives can connect places, ideas and artefacts, through people.  When it comes to exhibitions and artefacts, a key objective is to creating resonance and wonder.  I, for one, am looking forward to visiting the new gallery when it is opened.

Making history relevant through education and experience: Arthur Tatnall

I seem to remember that Arthur began with some questions: 'why should we be interested?  What questions comes to mind when se see an old mainframe? What can we do to make artefacts relevant and important?  What difference did it make to people's lives at the time?'  These are all great questions.

Linking back to an earlier presentation, there are (of course), a number of different streams that are important, such as mathematics, technologies for automation and control, technologies for information processing, communication technologies.  Interestingly,  Arthur mentioned something called Actor-network theory (Wikipedia).  This was a theory that I hadn't heard of before, and having an interest in the social sciences, this is something that I'll be certainly taking the time to look at.  In essence, the theory seems to be about the interaction between people and things.

Arthur also introduces some really important issues, such as, how do we preserve software?  (This is a question which crops up a number of different times throughout this conference).  There is, of course, the question of how we might convey the importance and relevance of software to visitors.  One approach might be to make use of guides to make the exhibits come alive (as long as they don't scare away any of the visitors, of course!)

Session: Key collections and the future plans

Heinz Nixdorf MuseumsForum: Jochen Viehoff

I never knew this, but apparently the Heinz Nixdorf computer museum is one of the largest of its kind in the world.  We were told that the museum has a total of one and a half thousand objects.  These range from very early mechanical calculating machines, such as those designed by Pascal and Liebnitz and also include objects that relate to the early history of telecommunications and telegraphy, such as an early machine by Samuel Morse.

Exhibits include a reconstruction of a Hollerith machine (Wikipedia) (which is an important part of the story of the IBM computer company) and different mechanical constructions and representations of the theoretically important Turing machine (Wikipedia).

By the end of the presentation I felt that this was one museum that I would certainly like to visit.  The challenge (as emphasised by Jochen) is that it might be quite difficult to find as we were told that the town of Paderborn, where the museum is situated, is not easy to get to.  (I was later told that he was exaggerating!)

Computers' Collection at the Polytechnic Museum: Marina Smolevitskaya

I never knew that there were so many museums that were collecting computing related artefacts!  During one of the breaks, I later found out that there was a completely new computer museum opening in Cambridge (I look forward to learning more).  Marina, however, briefly talked about her work at the Polytechnical Museum (Wikipedia), Moscow, Russia.  The computing collection was founded in the 1960s and now consists of 800 objects and 2000 documents.

Session: Expanding the audience for computing history

The Case of Computing: Gauthier van den Hove

Students who learn mathematics and computing don't (it was stated) tend to learn much history.  This said, there are some exceptions - there are courses in the history of mathematics, and there are some lecturers (some of them who came to this conference) who teach the history of computing.

Gauthier drew our attention to the differences between historical disciplines, such as the humanities (where history plays an important and central role), and ahistorical disciplines, which could be considered as more technical subjects.  I'm not so sure whether things are as clear cut as this, but I understand the point that is being made.  I've also noted down that Gauthier says that one of the dangers is anachronism.  For example, it is very easy to view the past through the glasses or spectacles of the present; we can very readily take for granted what we know.  (This connects to the earlier points about technological determinism and that it is difficult to see the rich histories underpinning the technologies that we use on a day to day basis).

There are two really nice quotes that I've made a note of.  These are:  'one of the main tasks of a historian is to identify the main facts to help us to remember the past' and, 'the past is a source of inspiration for the present'.   Another thought regarding the role of a historian is that their role is about identifying stories too, and that everyone is situated within a unique historical context.  When we consider the past, we need to consider the present too (and the relationship that we have with it).

The Mundaneum: Delphine Jenart

Delphine Jenart introduced something that I had never heard of before: the Mundaneum (Wikipedia).    In some ways, the Mundaneum, which is strongly connected to the subject of documentation science, can be associated with more recent ideas, such as Vannevar Bush's famous article As we may think (Wikipedia).

The take away points that I took from Delphine's presentation was the importance of press coverage and exposure, which connects with the thought that there are many different ways to connect with a wider audience and emphasise relevance.  More information about this can be uncovered by visiting the Mundaneum website.

Resurrecting Ukraine's computing heritage: Lynette Webb and Marina Tarasova

I was about half way through my doctoral research in the late 1990s when I stumbled across a paper in the Communications of ACM (perhaps the most prestigious computing journal there is) that had absolutely nothing at all to do with my research.  It was a paper that really grabbed my attention.  It was all about the design and development of computers in the Soviet era.

One of the challenges that I faced as a research student was that there were so many different things that I found interesting.  I spent a day or so reading and re-reading the paper before deciding that I had better put this to one side and get on with my main research before I got carried away - but this reminded me of my long-running interest in the old and the historical.  The paper presented a perspective and a social history that was very different to the one that I had read about in the computer magazines that I used to buy as a school kid.  I remembered all these things during Lynette and Marina's presentation.

Lynette talked about the connection with Google, and how this led to interviews and newspaper articles.  Some important points (in terms of exposing a computing related subject to the media) included the use of stories, anecdotes, anniversaries, photos and videos - all help to create a compelling and interesting picture.  Also, for those who are interested, there's a website entitled History of Computing in Ukraine. It's pretty interactive and contains some cracking pictures.

Session: Spotlight on research projects

The Konrad Zuse internet archive project: Christian Burchard

Christian Burchard introduced the Konrad Zuse internet archive project.  Not only did Christian talk about the archive (and how researchers might use to explore and study documents), but he also told us about a number of other resources exhibits and resources.   He also mentioned the reconstruction of the Z1 machine and associated on-line resources, such as a way to view the different components of the machine, and a demonstration of how it works.

As an aside, I understand that the Science Museum is hoping to make their archive of Babbage documents available to anyone who might be interested.

The Monads project: Chris Avram

Innovation and developments in early computing occurred at many different places at the same time.  Universities played a significant role in shaping and developing early digital hardware and software.  It is, perhaps, little surprise that universities have become unexpected custodians of machine of the past.

Chris Avram spoke of the preservation of computing at Monash University,Australia, and treated us to a number of interesting anecdotes regarding the use of punched cards and paper clips.  He also introduced us to the Monads computer, which was developed in collaboration with partners in Germany.  This went some way to reminding me that each institution has its own technical history which needs to be cared for.

Session: Integrating history with computer science education

Using old computers for teaching computer science: Giocanni Cignoni

There is a very compelling argument that some old things are simpler and are therefore easier to understand.  Old computers and technology opens up a range of different opportunities when it comes to teaching.  Instead of being impossibly miniaturised, circuits that do essential things are exposed, allowing ideas and principles to be potentially more readily understood.

Giocanni told us about early Italian computers.  Just as each university has its own history, there is also a wider history that connects with and related to individual countries (and groups of countries).  Another aspect to computing education is that simulations of early systems can expose the detail about how they could be operated.  Giocanni told us about the HMR project (pdf copy of presentation).  A simulator could be used to emphasise the difficulties, but also enable the fundamentals and the inherent complexity of devices to become more tangible.

Is there a future in the Past: Chris Monk

Chris is learning co-ordinator at the national museum of computing at Bletchley Park, which isn't too far from the Open University campus.  Visitors from schools are very welcome to visit the museum.  Not only can visitors be fascinated by the various galleries and exhibits, but Chris also runs 'learning to program' or coding sessions on a cluster of BBC Model B (Wikipedia) computers.  I visited this learning space a couple of years ago, and it reminded me of a couple of classrooms in my old school.

Chris commented that some learners can become very enthusiastic about the programming activities and even go as far ask asking where they might be able to buy one of these old computers.  In such cases, students are directed to more modern resources, such as emulators.  A quick internet search (I couldn't resist...) reveals a wealth of resources.

The museum has seen an increase in visitor numbers in recent years.  An interesting point to note is that there is an apparent (and significant) gender imbalance, with boys outnumbering girls to a ratio of 30:1.  During Chris's talk, I've also made a note of a site (or a project) called Young Rewired State that aims to inspire the next generation of coders and developers.

In some respects, old machines or devices reflect the times in which they were built and used.  Chris asked the interesting question, which is: 'will the word computer still exist in ten years?', when devices are disappearing into our clothes and into our environment.

Apparently, computing pioneer Grace Hopper once said, 'computing without a past is just a subject, not  a science'.  A thought (or point) emerging from this session is that it is incredibly easy to get thoroughly absorbed into the here and now.

Bringing relevance to computing courses through history: John Impagliazzo

I've made the following notes during John's talk: history broadens outlook, it helps us to look beyond the machine and can help us to think critically.  History helps to make the discipline mature, yet it's only done on the fringe.  In which faculty should a historian of computing or technology sit?  Should it sit within the history or the computing department?

John also mentions the importance of corporate history.  Whilst a lot of the very early developments took place within universities (or organisations that are closely connected to universities in one way or another), more recent developments have obviously and undeniably taken place in the industrial sector.  An example of this might be the history of Control Data Corporation (Wikipedia).  (As a brief aside, John also mentioned the Charles Babbage Institute, which is a centre for the history of information technology at the University of Minnesota).

I've also made the note of the following question:  'are teachers of technology conversant with the history of the technology that they teach?'  His point is that we're much more able to remember a story than a logical argument (or a bunch of abstract ideas).  Knowing a bit of history is good for the teachers, which means that it's good for our students too.

Adapting, rather than re-inventing the wheel: Martha Crosby

The final presentation of the day was by Martha Crosby, who had travelled to the conference from the University of Hawaii, a university that has its own unique place in the history of computing and digital communications.  If you're interested in this aspect of computing history, the detail about ALOHANet (Wikipedia) is pretty interesting - it was something that kept me occupied as an undergrad.

Martha took us on a very quick tour of various milestones, whilst making the point that history adds to your toolbox in terms.  She touched on history of IBM, the development of the Harvard Mark 1, the ENIAC computer, the work by Zuse, and the Altair (one of the first personal computers).  Interestingly, Martha also touched upon the subject of programming languages, which has its own history that hasn't been discussed as much.

I've taken a note of a great quotation, which goes: 'the history of computing is the history of human kind's creativity and ingenuity which is why we should hold onto it forever' which I believe might have been attributed to Jason Scott (Blog).    (Searching the source of this quote led me to this very interesting software archive (Archive.org) - which also seems to be a repository of software).

A final point is that ideas in computing are very often adaptations of ideas that already exist.  Understanding the trajectory of their development and combination is one way to understand the present.

Evening event: Alan Turing's Life and Legacy

By the end of first day, my head was beginning to ache, big time.  It was a full on day, which took everyone to the pre-history of computing and back.  We even (briefly) went back as far as 100 BC, before returning (close) to the present day to the origins of the personal computer and the internet.

After an hours break, we found ourselves exploring a gallery in the Science Museum about the life of Alan Turing.  There were exhibits that I had never seen before, such as the ACE Computer (Wikipedia). 

 

Permalink Add your comment
Share post
Christopher Douce

South East of England Associate lecturer conference: Kent College

Visible to anyone in the world
Edited by Christopher Douce, Monday, 24 Mar 2014, 14:14

Twice a year Open University associate lecturers have an opportunity to attend regional development events.  These conferences offer tutors a number of different training sessions about a range of different topics, ranging from change in university policies, through to the best way to use technology.

Each event is different and has a slightly different character.  This blog is a really simple overview of an event that I recently attended at Kent College.  In fact, I think I remember visiting Kent College to attend my first ever tutorial, which was run by my then mentor, not long after starting as an associate lecturer.  I remember getting quite lost amongst a number of different buildings and being in quite a gloomy room.  Things have changed: Kent College was unrecognisable.  Old buildings had been demolished to make way for new modern ones.  This, however, wasn't the only surprise.

Teaching through drama

Not long after arriving, we were all gently ushered into a large theatre.  We could see a number of tables set out at the front and I immediately expected to endure a series of formal presentations about changes to the structure of the university, or an update about student registrations, for example.   Thankfully, I was disappointed. 

From stage left and right, actors suddenly appeared and started to scream and shout.  It immediately became apparent that we were all in the middle of a theatre production which was all about teaching and learning.  We all watched a short twenty minute play of a tutorial, in which we were presented with some fundamentally challenging situations.  The tutorial, needless to say, was a disaster.  Things didn't go at all well, and everyone seemed to be very unhappy.  Our hapless tutor was left in tears!

When the play had finished and we were collectively shocked by the trauma of it all, we were told that it would be restarted.  We were then told that we should 'jump in' and intervene to help correct the pedagogic disaster that we were all confronted with.  Every five or so minutes, colleagues put up their hands to indicate that they would like to take control of the wayward situation.  It was astonishing to watch for two different reasons.  Firstly, the willingness that people took on the situation, and secondly the extensive discussions that emerged from each of the interventions.

Towards the end of the modified (and much more measured) play, I could resist no longer.  I too put up my hand to take on the role of the hapless tutor 'Rosie'.  My role, in that instant, was about communicating the details surrounding an important part of university policy and ensuring that the student (played by an actor) had sufficient information to make a decision about what to do.   It was an experience that felt strangely empowering, and the debates that emerged from the intervention were very useful; you could backtrack and run through a tricky situation time and time again.  The extensive audience, sitting just a few meters away, were there to offer friendly situations.

If an outsider peered around the door and saw what was going on, it might be tempting to view all this activity as some form of strange self-reflective light entertainment.  My own view is very different: there is a big distance between talking about educational practice in the third person, i.e. discussing between ourselves what we might do, and actually going ahead and actually doing the things that could immediately make a difference.   A really nice aspect of the play was that all the students (as played by actors) were all very different.  I'm personally very happy that I'm not tutoring on the fictional module 'comparative studies'!  This first session of the AL development conference was entertaining, enjoyable, difficult and insightful all at the same time.

Sessions

After the theatre production, we (meaning: conference delegates) went to various parallel sessions.  I had opted for a session that was part about the students and part about gaining more familiarity with the various information systems that tutors have access to (through a page called TutorHome).  I've heard it said time again that the only constant in technology is change.  Since the OU makes extensive use of technology, the on-line portal that tutors use on a day to day basis is occasionally updated.  A face to face training session is an opportunity to get to know parts of our on-line world that we might not have otherwise discovered, and to chat with other tutors to understand more about the challenges that each of us face.

The second session that I attended was also very different.  Three research students from the University of Surrey presented some of their research on the subject of motivation in higher education.  There is, of course, quite a difference between the face to face study context and the Open University study context.  A presentation on methods and conclusions gave way to an extended (and quite useful) discussion on the notion of motivation.

One memory of this session is the question of how it might potentially move from being strategic learners (completing assignments just to gain credit for a module or degree), to motivation that is connected with a deep fascination and enthusiasm for a subject.  There are a number of factors at play: the importance of materials, the way in which support is given and the role that a tutor can play in terms of inspiring learners.

I made a note about the importance of feedback (in response to assessments that had been completed and returned).  A really important point was that negative feedback can be difficult to apply, especially if there is no guidance about what could be done to improve.  (This whole subject of feedback represents a tip of a much larger discussion, which I'm not going to write about in this blog).

In terms of inspiration, one useful tip that I took away from this final session was that the relevance and importance of a module if a module can be connected to debates, stories and discussions that can be found in the media.  Although this is something that is really simple (and obvious), it sometimes takes conferences such as these to remind us of the really important and useful things that we can do.

Final points

All in all, a fun day!  From my own personal perspective, I enjoyed all the sessions but I found the theatre session particularly thought provoking - not just in terms of the points that were covered, but also in terms of the approach that was used.

Since I have no idea who is going to be reading this particular blog post (not to mention all the others I've written!), I guess I'm primarily writing for other OU tutors who might accidentally discover these words.  If you are a tutor, my overriding message would be: 'do go along to your regional conferences if you can make it - they are really good fun!'

If you're a student with the university I guess my message is that there are many of us working behind the scenes.  We're always trying to do the best that we can to make sure that you're given the best possible learning experience.  Another point that I must emphasise is that the instances of interaction with tutors are really important and precious (for student and tutor alike).  So, if you're a student, my message is: 'do go along to any face to face tutorials or days schools that might be available as a part of your module - there is always going to be something that you'll be able to take away'.

Permalink Add your comment
Share post
Christopher Douce

Animal Computer Interaction : Seminar

Visible to anyone in the world
Edited by Christopher Douce, Sunday, 4 Nov 2018, 11:09

As a part of my job I regularly visit the Open University campus in Milton Keynes.  On the 5 June, I managed to find some time to attend a seminar by my colleague Clara Mancini.  Over the last couple of years, I had heard that Clara had been doing some research into the subject of Animal-Computer Interaction but we had never really had the opportunity to chat about her work.  Her seminar was the perfect opportunity to learn more about the various ideas and projects she was working on.

After a short introduction, Clara mentioned a number of topics from human-computer interaction (or 'interaction design').  These included topics such as the use of ambient technology.  This could include the use of smart sensors that can be embedded into the fabric of buildings, for example, so their environmental conditions and properties can dynamically change. Other topics include the use of augmented reality.  This is where additional information is presented on top of a 'real' scene.  You might say that Google Glass is one product that can make good use of augmented reality.

Clara also spoke of the interaction design process (or cycle), where there is a loop of requirements gathering, designing and prototyping, followed by evaluation.  A key part of the process is that users are always involved.  ACI is very similar to HCI.  The biggest difference is the users.

History and context

It goes without saying that technology is being used and continues to be used to understand our natural world.  One area which is particularly interesting is that of conservation research, i.e. understanding how animals behave in their natural environment.  One approach to develop an understanding is to 'tag' animals with tracking devices.  This, of course, raises some fundamental challenges.  If a device is too obtrusive, it might disrupt how an animal interacts within its natural environment.

Another example of the application of technology is the use of computer driven lexigraphic applications (or tools) with great apes.  The aim of such research is to understand the ways that primates may understand language.  In conducting such research, we might then be able to gain an insight into how our own language has evolved or developed.

Products and systems could be designed that could potentially increase the quality of life for an animal.  Clara mentioned the development of automated milking machines.  Rather than herding cows to a single milking facility at a particular time, cows might instead go to robotic milking machines at times when it suits them.  An interesting effect of this is that such developments have the potential to upset the complex social hierarchies of herds.  Technology has consequences.

One important aspect of HCI or interaction design is the notion of user experience.  Usability is whether a product allows users to achieve their fundamental goals.  User experience, on the other hand, is about how people feel about a product or a design.  A number of different usability experience goals have emerged from HCI, such as whether a design is considered to be emotionally fulfilling or satisfying.  Interaction designers are able to directly ask users their opinions about a particular design.  When it comes to designing systems and devices for animals, asking opinions isn't an option.  Clara also made the point that in some cases, it's difficult for us humans to give an opinion.  In some senses by considering ACI, we force ourselves to take a careful look at our own view of interaction design.

Aims of ACI

Clara presented three objectives of ACI.   Firstly, ACI is about understanding the interaction and the relationship between animals and technology.  The second is that ACI is about designing computer technology to give animals a better life, to support them in their tasks and to facilitate or foster intra and inter species relationships.  The third is to inform development of a user-centred approach that can be used to best design technology intended for animals. 

Clara made the very clear point that ACI is not about conducting experiments with animals.  One important aspect of HCI is that researchers need to clearly consider the issues of ethics.  Participants in HCI research are required to give informed consent.  When it comes to ACI, gaining consent is not possible.  Instead, there is an understanding that the interests of participants should take precedence over the interests of science and society.

Projects

Clara described a system called Retriva (company website), where dogs can be tagged with collars which have a GPS tracking device.  Essentially, such a product allows a solution to the simple question of: 'if only I could find where my dog was using my iPhone'.  Interestingly, such a device has the potential to change the relational dynamics between dog owner and dog.  Clara gave an example where an owner might continually call the name of the dog whilst out walking.  The dog would then use the voice to locate where the owner was.  If a tracker device is used on a dog, an owner might be tempted less to call out (since he or she can see where the dog is on their tracking app).  Instead of the owner looking for the dog, the dog looks for the owner (since the dog is less reliant on hearing the owner's voice).

Dogs are, of course, used in extreme situations, such as searching for survivors following a natural disaster.  Technology might be used to monitor vital signs of a dog that enters into potentially dangerous areas.  Different parameters might be able to give handlers an indication of how stressed it might be.

As well as humanitarian uses, dogs can be used in medicine as 'medical detection dogs'.  I understand that some dogs can be trained to detect the presence of certain types of cancers.  From Clara's presentation I understand that the fundamental challenges include training dogs and attempting to understand the responses of dogs after samples have been given to them (since there is a risk of humans not understanding what the dog is communicating when their behavioural response to a sample is not as expected).

One project that was interesting is the possible ways in which technology might be used to potentially improve welfare.  One project, funded by the Dogs Trust, will investigate the use of ambient computing and interactive design to improve the welfare of kennelled dogs.  Some ideas might include the ways in which the animals might be able to control aspects of their own environment.  A more contented dog may give way to a more positive rehoming outcome.

Final points

Clara presents a question, which is, 'why should we care about all this stuff?'  Studying ACI has the potential to act as a mirror to our own HCI challenges.  It allows us to think outside of the human box and potentially consider different ways of thinking about (and solving) problems. 

A second reason connects back to an earlier example and relates to questions of sustainability.  Food production has significant costs in terms of energy, pollution and welfare.  By considering and applying technology, there is an opportunity to potentially reconceptualise and rethink aspects of agricultural systems.  A further reason relates to understanding about to go about making environments more accessible for people who share their lives with companion animals, i.e. dogs who may offer help with some everyday activities.

What I liked about Clara's seminar was its breadth and pace.  She delved into some recent history, connected with contemporary interaction design practice and then broadened the subject outwards to areas such as increasing prominence (welfare) and importance (sustainability).  There was a good mix of the practical (the challenges of creating devices that will not substantially affect how an animal interacts within their environment) and the philosophical.  The most important 'take away' point for me was that there is a potential to learn more by looking at things in a slightly different way. 

It was also interesting to learn about collaborations with people working in different universities and disciplines.  This, to me, underlined that the boundaries of what is considered to be 'computing' is continually changing as we understand the different ways in which technology can be used.

Acknowledgements:  Many thanks to Clara for commenting on an earlier part of this blog.  More information about Clara's work on Animal -Computer Interaction can be seen by viewing an Open University video clip (YouTube).

Permalink 2 comments (latest comment by Jackie Doorne, Friday, 19 Jul 2013, 14:13)
Share post
Christopher Douce

BCS Lecture: The Power of Abstraction

Visible to anyone in the world
Edited by Christopher Douce, Friday, 10 Aug 2018, 14:41

When I was a graduate student at the University of Manchester (or the bit of it that was once known as UMIST) I was once asked to show some potential computer science students around the campus.  At the end of the tour I ushered them to lecture which was intended to give the students a feel for what things would be like if they came to the university.

The lecture, given by one of the faculty, was all about the notion of abstraction.  We were told that this was a fundamental concept in computing.  In some respects, it felt less of a lecture about computing, but more of a lecture about philosophy.  I had never been to a lecture quite like it and it was one that really stuck in my mind.  When I left the lecture, I thought, 'why didn't I have this kind of lecture when I was an undergraduate?'  As an undergrad I had spent many a hour creating various kinds of computer programs without really being told that there was an essential and fundamental idea that underpinned what I was doing.

When I saw the British Computer Society (BCS) advertising a lecture that was about the 'power of abstraction', I knew that I had to try to make time to come along. The lecture, by Professor Barbara Liskov, was an annual BCS lecture (the Karen Spärck Jones lecture) that honours women in computing research.

All this sounds great, right?  But what, fundamentally, is abstraction?  An 'abstract' at the top of a formal research paper says, in essence, what it contains.  Abstraction, therefore, can be thought of as a process of creating a representation of something, and that something might well be a problem of some kind.  Admittedly, this sounds both confusing and vague...

Barbara began her lecture by stating that abstraction is the basis of how we implement computer software.  The real world is, fundamentally, a messy place.   Since computers are ultimately mathematical machines, we need a way to represent problems (using, ultimately, numbers) so that a computer can work with them.  As a part of her lecture, Barbara said that she was going to talk through some developments in the way that people (or computer programmers) could create and work with abstractions.  I was intrigued; this talk wasn't just about a history of programming languages, it was also a history of thought.

So, what history was covered?  We were immediately taken back to the 1970s.  This was a period in computing history where the term 'software crisis' gained currency. One of the reasons was that it was becoming increasingly apparent that creating complex software systems was a fundamentally difficult thing to do.  It was also apparent that projects were started, became excruciatingly late and then abandoned, costing astronomical amounts of money. (It might be argued that this still happens today, but that's a whole other debate which goes beyond this pretty short blog post).

One of the reasons why software is so fundamentally hard to create is that it is 'mind stuff'.  Software isn't like a physical artefact or product that we can see. The relationships between components can easily become incredibly complicated which can, in turn, make things unfeasibly difficult.  Humans, after all, have limited brain capacity to deal with complexity (so, it's important that we create tools and techniques that help us to manage this).

We were introduced to a number of important papers. The first paper was by Dijkstra, who wrote a letter to the Communications of the ACM entitled, 'Goto considered harmful'.  'Goto' is an instruction that can help to create very complicated (and unfathomable) software very quickly.  Barbara described the difficulty very clearly. One of the reasons why software is so hard is that there is a fundamental disconnect between how the program text might be read by programmers and how it might be processed or executed by a machine.  If we can create a program representation that tries to bridge the difference between the static (what is described should happen) and the dynamic (what actually happens when software does its stuff), then things would be a whole lot easier.

Another paper that was mentioned was Wirth's 'program development by stepwise refinement'. Wirth is famous for the design of two closely related languages: Pascal and Modula-2. It certainly is the case that it's possible to write software without the 'goto' instruction, but Barbara made the interesting point that it's also possible to write good, well-structured software in bad languages (providing that you're disciplined enough). The challenge is that we're always thinking about trade-offs (in terms of program performance and code economy), so we can easily be lured into doing clever things in incomprehensible ways.

Barbara spoke about the importance of modules whilst mentioning a paper by Parnas entitled, 'information distribution aspects of design methodology'. One of the great things about modules, other than that they can be used to group bits of code together, is that they enable the separation of the implementation and the interface.   This has reminded me of some stuff from my undergrad days and time spent in industry: modules are connected to the term 'cohesion'.  Cohesion is, simply, the idea that something should do only one thing.  A function that has one name and does two or more things (that are not suggested in its name) is a recipe for confusion and disaster.  But I fear I'm beginning to digress from the lecture and onto one of my 'coding hobbyhorses'.

Through a short mention of a language called Simula-67 (Wikipedia) we were then introduced to a paper by Liskov and Zilles entitled, 'programming with abstract data types'.  We were told that this paper represented a sketch of a programming language which eventually led to the creation of a language called CLU (Wikipedia), CLU being short for Clusters.

There is one question Barbara clearly answered, which is: why go to all the trouble of writing a programming language?  It's to understand whether an idea works in practice and to understand some of the barriers to performance.  Also, whenever a language designer describes a language in natural language there are always going to be some assumptions that the compiler writer must make. Only by going through the process of creating a working language are language designers able to 'smoke out' any potential problems.

Just diverting into programming language speak for a moment, CLU implemented static type checking, used a heap, and doesn't support concurrency, the goto statement or inheritance.  What it does implement is polymorphism (or the use of generics), iterators and exception handling.

Barbara also mentioned a very famous language called Smalltalk, developed by Alan Kay.  Different developments at different times and at different places have all influenced the current generation of programming languages.  Our current object-oriented languages enable programmers to define abstractions, or a representation of a problem in a way that wasn't possible during the earlier days of software.

Research directions

Barbara mentioned two research topics that continue to be of interest.  The first was the question of what might be the most appropriate design of a programming language for novices?  In various years, these have been BASIC (which introduced the dreaded Goto statement), Pascal, and more recently Java.  Challenges of creating a language that helps learners develop computational thinking skills (Wikipedia) include taking account of programming language design trade-offs, such as ease of use vs. expressive power, and readability vs. writeability, and how to best deal with modularity and encapsulation.

Another research subject is languages for massively parallel computers.  These days, PCs and tablets, more often than not, contain multiple processor cores (which means that they can, quite literally, be doing more than one calculation at once).  You might have up to four cores, but how might you best design a programming language that more efficiently allows you to define and solve problems when you might have hundreds of processors working at the same time?  This immediately took me back to my undergrad days when I had an opportunity to play with a language called Occam (Wikipedia).

There was one quote from Barbara's lecture that stood out (for me), and this was when she said, 'you don't get ideas by not working on things'. 

Reflections

I should say at the point that I haven't done Barbara's speech justice.  There were a whole lot of other issues and points that were mentioned but I haven't touched on.  I really enjoyed being taken on a journey that described how programming languages have changed.  I liked the way that the challenges of coding (and the challenge of using particular instructions) led to discussions about modules, abstract data types and then to, finally, object-oriented programming languages.

It's also possible to take a broader perspective to the notion of abstraction, one that has been facilitated by language design.  During Barbara's lecture, I was mindful of two related subjects that can be strongly connected to the notion of abstraction.  The first of these is the idea of design patterns.

Design patterns (Wikipedia) take their inspiration from architecture. Rather than design a new building from scratch every time you need to make one, why not buy a pre-existing design that has already solved some of the problems that you might potentially come up against?  There is a strong parallel with software: developers often have to solve very similar problems time and time again.  If we have a template to work from, we might arguably get things done more quickly and cheaply.

Developers can use patterns to gain inspiration about how to go about solving common problems.  By using well understood and defined patterns, the communication between programmers and developers can be enhanced since abstract concepts can be readily named; they permit short-cuts to understanding.

In some cases, patterns can be embedded into pre-existing code that can be used by developers to kick-start a development.  This can take the form of a framework, software code that solves well known problems that ultimately enables developers to get on and solve the problems that they really need to solve (as opposed to dealing with stuff such as reading and writing to databases).

Abstraction has come a long way in my own very short career as a developer. One of the biggest challenges that developers face is how to best break down a problem into structures that can be represented in a language that a machine can understand.  Another challenge lies with understanding the various tools that developers now have at their disposal to achieve this.

Note: The logo at the top of the blog is used to indicate that this blog relates to a BCS event and this post is not connected with the BCS in any other way. All mistakes and opinions are my own, rather than that of the OU or the BCS.

Permalink Add your comment
Share post
Christopher Douce

Journey: London to Lincoln

Visible to anyone in the world
Edited by Christopher Douce, Sunday, 14 May 2017, 10:01

20130502_163018

Riding from London to Lincoln on a motorbike is a blast.  I decided to be sensible and set off after the rush hour but I just couldn't wait.  I edged out into the London traffic at nine in the morning and quickly realised that I had made a mistake.  After about half an hour of wrestling with traffic, I was on an A-road heading towards the London orbital motorway.  Fifteen minutes later, I was circumnavigating a large chunk of London and heading towards the M11; a route that I hadn't done before.

The reason for my trip up to Lincolnshire was to visit my parents.  It was the third time I did this trip via motorbike and on this occasion I decided that I wanted to go on a journey that I had promised to take ever since I started to learn more about the history of computing.  

Lincoln is a city that I know well.  I spent quite a lot of time there, staying at my parents house whilst I got my head down to spend many hours doing some computer programming for a research project I worked on a couple of years ago.  During this time I also gained my motorbike licence.  I used to spend hours riding to and from Lincoln, gaining some kind of perverse pleasure if I became snarled up in a traffic jam (since it gave me the opportunity to practice clutch control and feathering the back brake).  Gradually, some of the city's secrets revealed themselves to me; the links between the old and the new - the contrast between the imposing medieval cathedral and ancient castle juxtaposed against modern industrial units and trading estates.

The M11 was a dull but quick road.  Within a couple of hours I skirted part Cambridge, a city that I've been to before a number of times but barely know.  As I rode I made a mental note that I need to return.  When it comes to the history (and the future) of the computer, Cambridge is a fundamentally important place.  My objective, at that moment, was to get to Lincoln and leave Cambridge for another day.

The M11 soon became the A1 and within hardly any time at all, I discovered the exit I was looking for: Stamford.  A gentle ride through this pretty market town soon gave way to quieter roads, the kinds of roads that motorcyclists love; roads that are gently undulating and sweep from left to right.  Not only were they undulating, they were also fairly empty, there was no rain and very little wind: perfect.  Small towns and villages came and went, my destination becoming ever nearer.  All in all, the journey took about five hours, including two stops (one for fuel, another for coffee).

After two days of catching up with my parents, the time had come; I was going to take a short trip to explore some places I had read about, had ridden past and had never properly seen.  I donned my protective 'gubbins' and set off across the fens.  There is this glorious road between the village where I was staying and Lincoln.  It's dead straight, with wide distant fields on either side - you can see for miles.

My objective was to get to the heart of the city and park in a place where had seen bikers parking.  When I got to the city, I blundered my way through the one way system twice before I bagged a space, vacated by a departing Ducati.  My first objective was to figure out where Silver Street was.  I looked up a nearby street.  I had accidentally (or unconsciously) parked on Silver Street!  My next objective was to find number 34, the birth place of George Boole (1815-1864).

If you're a computer scientist or just a casual user of a spreadsheet or database you would have quite likely stumbled across his name.  The terms 'boolean expressions' or 'boolean conditions' have been, quite obviously, derived from his name (in the same way that the word algorithm can be traced back to the name of a Persian mathematician).  I have to admit that I've only just started to scratch the surface on the history of Boole.  George's father, John, was cobbler.  Apparently was somewhat distracted by other pursuits, particularly mathematics and science.

I walked the entire length of Silver Street to try to find number thirty-four but quickly became confused; the street numbers were few and far between.  There seemed to be no discernible pattern.  I adopted the age old tactic of 'appearing to be confused' and barrelled into the entrance of an estate agent.  'Excuse me, mate, is this number thirty-four?' I asked a smart looking man who was wearing a shirt and sporting a tie.  'This is number thirty-two... I have no idea where number thirty-four is, might be next door?'  I offered a smiley thank you and returned to the street.

'Hello... erm, is this number thirty-four?', 'Yes!' came the delighted reply from a nice lady who was sat at a computer.  Number thirty-four, like number thirty-two was an estate agency.  'I've found it!' I exclaimed.  I took a step back and cast my eyes around the office-like interior, as if I was looking for some kind of shrine to the great man.  Instead, I saw a photocopier. 

The nice lady was bewildered.  I explained that where she worked just happened to be the birthplace of a famous mathematician (which appeared to bewilder her even more).  I was tempted to explain my enthusiasm by started to talk about the importance of Boole and the history of the computer but I felt that it was neither the time nor the place since I obviously wasn't interested in buying a house.  Realising that my first quest was coming to an end, I began to feel that I was making a bit of a nuisance of myself.  Before I went, I asked for their business card (to gain proof that their estate agency really was number thirty-four).  Sure enough, I had found number thirty four Silver Street.

Boole invented something called Boolean Algebra and I know his work in terms of Boolean Logic and studied it college during my vocational course in computing.  He proposed a form of algebra that works with two states: one or zero, or true or false.  The reason why Boole's work became so important was that computers represent everything using numbers which are made of these two states  Sound, music, images, video, computer software, documents, instructions to turn on burglar alarms, pretty much anything you can imagine can ultimately, represented using just 'on' and 'off'.  Strings of these states form numbers: the bigger the number of 'bits' (which are, in essence, Boolean on-off states) the more numbers that can be stored and moved around in a computer.

But why use those two states?  The answer is pretty simple: it makes electronics simple.  By going with the simplest possible representation it's then possible to do ever increasingly complicated stuff with a high degree of reliability.  One day, I hope to write something about electronic machines that worked with the kinds of numbers that humans work with - but would require a much longer journey than the one I'm writing about.

I'm simplifying things terribly here (since I'm not a mathematician and I'm writing about subjects that are slightly outside of my area of expertise), but I think it's safe to say that Boole's work on logic is so fundamental that without it we wouldn't have computer processors or logic circuits.  Boole, ultimately, created the tools of thought that allowed us to work with logic states.  In software terms, an on-off state can be considered akin to an atom in the physical world.

Boole's birthplace wasn't the only place I wanted to visit.  After saying my goodbyes to the nice estate agent people, I had another quest: to go and visit the school that Boole founded.  I walked to the end of Silver Street, crossed a road, walked a bit, then got confused... and only then consulted my GPS enabled mobile phone.  Within minutes, I was walking up a steep flight of stairs towards Lincoln's medieval cathedral.  It stuck me that I had probably found a path that hadn't changed for a couple of hundred years; some of the steps had been visibly worn down over time.  Looking upwards, I could see the cathedral through a small archway in the distance.

20130502_164044

When I was at the top, standing in the shadow of the cathedral, I consulted my phone again and figured out where I needed to go.  I knew where I was.  I had ridden on it many times before on my bike training.  It's a road that runs from the bottom of the hill (where the industrial and retail part of the city), to the ancient part of the city.  The top bit can get a bit exciting, since it's quite a fast road and two lanes merge into one before taking a route past the cathedral.   Within moments, I had arrived at my second destination.  I peered through the railings at a lovely looking house and I soon found a plaque on the wall that indicated that I was in the right place.  Here's what it said: 'George Boole, father of modern algebra. Author of the laws of thought and first professor of mathematics at university college, Cork, was born in Lincoln and established an academy in this house c. 1840'.  Satisfied, I turned around and retraced my steps and returned to my bike. 

Five days later it was time to return to London.  I set off ridiculously early, hoping to avoid as much traffic as I could.  The ride though Lincolnshire was beautiful.  There were these moments where you could see where dew had touched the undulating roads that I could see in the distance; roads that appeared as ribbons of silver.  I was touched by not only the physicality of negotiating them, but awestruck by the light and the experience that the roads were presenting me.  By the time I had got to London, everyone was fully awake and the motorways that took me back to South East London were pretty solid.

I've now got some more work to do to answer a number of different questions: what was the time in which Boole living was really like?  Who else did Boole know?  What kind of work did he do after he left Lincolnshire?  How exactly did he influence other mathematicians and has he made other contributions to mathematics (with a view to understanding its connection with computing), other than the ones that I've already touched on?  Time, of course, is the challenge: there are so many other questions out there that are interesting!

I've also got some plans for the next journey. I'm going to stick around in South East London for a bit and then cross the river for another Babbage related adventure.  I'm going to be spending quite a lot of time in London before venturing further afield. 

Permalink 2 comments (latest comment by Chris Stanton, Wednesday, 22 Jul 2020, 18:18)
Share post
Christopher Douce

ESRC seminar: inclusion, usability and difference

Visible to anyone in the world

On 22 April 2013 I managed to find a bit of time to attend a seminar that touched upon some of the themes that I recently blogged about, namely, the way in which technology can be made available (and can be used to help) different groups of users. 

During the day there were a total of five presentations, each of which touched upon many of the different themes that continue to be a strong interest: accessibility, usability, and the way in which technology can potentially help people.  Like so many of these blogs, I'm going to do a bit of a write-up of each presentation, and then conclude with a set of thoughts and points which emerged from the closing discussion.

Older people and on-line social interactions

The first talk of the day was by Shailey Minocha who talked about a project called OCQL (project website) that has been exploring how technology may be able to be used to help and support older people.  If you're interested, I've written a brief blog summary of an earlier workshop that Shailey and her colleagues ran.

Some of the issues that the project aims to explore are the different motivations for being on-line, understanding various advantages and disadvantages and corresponding potential risks and obstacles. Another aspect of the project was to explore whether we might be able to offer advice to designers to allow them to create more usable systems.

Shailey touched upon challenges and dilemmas that users may face.  One challenge is how we might help to create formal and informal support networks to enable users to not only get online in the first place, but also help users to develop their technology skills.  One comment that I noted was that 'buying a [internet] connected computer is easy, it's continuing to use it that is difficult'.

Shailey gave us a flavour of some preliminary findings.  A simple motivation for getting connected is a desire to keep in touch with people, which is connected with the advantage that certain aspects of technology has a potential to reduce social isolation.  Some of the obstacles included the need to gain technical support and the challenges that lie with understanding certain concepts and metaphors that are a necessary part of being on-line.  The perceived risks include fears about a loss of privacy, concerns about knowing who or which organisations or products to trust.  The perceived disadvantages include the fear that technology might take over the lives of the user and this might take the user away from other events and activities that were important.

I remember a really interesting anecdote of a user who started to use an iPad.  The device was used so much (to keep in contact with distant friends and family), that this took away from time socialising with other people who lived nearby.

Shailey also left us some recommendations.  Training, it was suggested, should be personalised to the needs of individuals.  One-off training sessions are not sufficient.  Instead, training should take place over a longer period of time. 

For those who are interested, here are two links to some related resources.  The first is a link to a paper entitled, Conducting empirical research with older people (ORO repository), to be presented at a human-computer interaction (HCI) conference.  The second is a set of web resources (Delicious) that have been acquired during the project.

Towards the end of the presentation I noted two really interesting questions.  The first was, 'to what extent is the familiarity of technology a temporary problem?', and the second question (which is related to the first) is: 'putting age as an issue to one side, how can we all prepare ourselves to become familiar with and work with the next big technological innovation that may be on the horizon?'

The haptic bracelets

Simon Holland, from the department of Computing and Communication introduced us to devices known as the Haptic Bracelet (Music Computer Laboratory).  In essence, a haptic bracelet is a wearable device that you can put on your wrist or ankle.  The word haptic, of course, relates to your sense of touch.  The devices can be controlled so that they can vibrate at different frequencies or produce rhythms.  They also contain accelerometers which can be used to detect movement and gestures. 

My first question was, 'okay, so all this stuff is pretty cool but what on earth can it be used for?'  Simon clearly had anticipated this thought and provided some very compelling answers.  Fundamentally, it can be used with the teaching of music, specifically with the teaching of rhythm, or drumming.  Drum kits have pedals; drummers use both their hands and their feet.  Simon told us that he imagined a device that was akin to an iPod: a form of music player that could help musicians to more directly (and immediately) learn and feel rhythms.  When I started to think about this, I really wanted one - I could imagine that a haptic iPod could add a whole new dimension to the music which I listen to as a travel across London on the tube.

Its one thing listening to a piece of music through headphones, it's something totally different if you're feeling beats and vibrations through the same limbs that could be creating exactly the same rhythm if you were sitting at a drum kit.  I've noted the following quote that pretty much sums it up:  'at best, it goes through your two ears... [but] how do you know what limb is doing what?!'  All this can be linked to a music education approach called Dalcroze Eurhythmics (wikipedia), which was something totally new to me.  Something else that I hadn't heard of before is sensorimotor contingency theory (which I don't know anything about, but whatever it is, it sounds very cool!)

Early on in his talk, Simon suggested that these devices have the potential to be an assistive technology.  One area in which these devices might be useful is with gait rehabilitation, i.e. by providing additional feedback to people who are trying to re-learn how to walk following a brain injury or stroke.  Apparently a metronome is used to help people to move in time with a rhythm, which is a useful technique to regain (and guide) rhythmic motor control.  One of the advantages of using haptic bracelets is that the responses or feedback they could provide could be more dynamic.  Plus, due to the presence of an accelerometer, different feedback might be presented in real-time - but this is mostly conjecture on my part; this is something that is a part of on-going research.

During the final part of Simon's slot, we were given an opportunity to play with some of the bracelets.  Pairs were configured in such a way that we were able to 'send' real-time rhythms wirelessly to another user.  When we 'tapped' on a table, the same 'tap' was picked up by someone else who was wearing another bracelet.

We were introduced to other (potential) uses.  These included sport, gaming, and helping with group synchronisation (or learning) in dance.  Fascinating stuff!

Digital inclusion in the era of the smartphone

Becky Faith is a doctoral student at the Open University who spoke about some of her research interests, and it was all pretty interesting stuff.  One of her areas of interest is how technology (particularly the smartphone) can be used as a means of support for vulnerable people (and how it might be used to gain support from others). 

During Becky's talk I was introduced to a range of new terms, phrases and frameworks that I hadn't heard of before, such as capability theory (which might relate to what rights people may have but are not aware of) and technofeminist theory.   I also noted questions that related to the roles of the private sector versus the state in facilitating access to technology.  This reminded me of one of the drivers for good interaction design and usability: that it can lead to higher levels of productivity, more effective sales and lower costs.  Since goods and services are now on-line, facilitating digital inclusion also, fundamentally, means good business sense.

Becky's session was also very interactive.  We were given a challenge: we had to find out a very specific piece of information using our smartphone (if we had one).  This was to find the name of our MEP.  We were also asked how we might feel if this was our only device.  I, for one, wouldn't be very happy.  I (personally) feel more comfortable with a keyboard that moves than one that is only visible on a screen.

The activity gave way to a debate.  Some users will be faced with fundamental access challenges.  These could be thought of in in terms of the availability of devices or availability of signal coverage.  Ultimately, there is the necessity of understanding the needs of the users, their situations and the kinds of devices and equipment they may have access to.  A thought provoking session.

Careware

Andrew Stuart from Careware (company website) started his presentation by describing a question that he had asked himself, or he had been asked by someone else (I didn't note down the exact wording!).  The question was, 'why can't I find my dog using my iPhone?'.  Dogs go missing all the time.  The company that Andrew established created a GPS dog collar, which allowed dogs to be found using iPhones.  A great idea!

Andrew's company later expanded to create devices, such as a tracking belt, which could be used with vulnerable people.  Tracking dogs is one thing, but tracking people is a whole other issue.  The idea of people wearing tracking devices obviously raises serious ethical issues, but the necessity for privacy needs to be balanced against the desire to ensure that vulnerable people (who are sometimes family members) are cared for and looked after.  It is argued that personal tracking devices can help some people to maintain their independence whilst allowing family members not only peace of mind but also open up new ways to offer personal support.  Users of a personal tracker can, for instance, press a button to alert other people of difficulties or problems.  A GPS belt (instead of a collar) is a device that is very different from a mobile phone (which, arguably, with its in built GPS facilities, can almost do a very similar task).

Andrew's presentation touched on a number of different issues, i.e. centralised telemedicine through call centres versus the use of individual devices for families, and the roles that local authorities may be able to play.  There were also hints of future developments, such as the use of accelerometers to potentially detect falls.

Open University modules such as Fundamentals of Interaction Design touch upon subjects such as wearable computing or wearable interfaces.  It was interesting to see that two presentations demonstrated two very different types of wearable devices - and both presentations were about how they can be used to help people, but in very different ways.

Exploring new technologies through playful peer-to-peer engagement in informal learning

The final presentation of the day was by Josie Tetley, from the Health and Social Care faculty.  Josie spoke of an EU funded project called Opt-In which 'aims to explore if and how new technologies can improve the quality of life of older people' and investigates 'whether existing pedagogic approaches are the best way of enabling older people to learn new technologies'.

Getting people to play with technology was one of the topics that were mentioned, both in a research lab, but also as a part of informal social settings.  Josie also spoke about the different research methods that were used, such as questionnaires, diaries and semi-structured interviews.  One point that I've noted include that some technologies can lead to obvious instances of deskilling, such as overreliance and use of satellite navigation systems.   

Some preliminary findings include that some users are interested in certain applications, notably video telephony applications such as Skype or FaceTime (wikipedia).  Technology, it was also said, can be readily accepted.  I also noted a really good phrase, which is that good technology transcends all age groups.

Summary

All in all, a very interesting event.  I have to say that I wasn't quite sure what I was letting myself in for.  I didn't really know too much about what was on the agenda before the morning of the seminar.  I was more guided by the words of the title that sparked an interest.

The most significant point that I took away from the day was that my conception of what an assistive technology was had been fundamentally broadened.  Another take away point related to the importance of considering the types of learning that are appropriate to different user groups. 

It was also great fun to hear about different research projects and gain an awareness of new ideas and frameworks.  Learning about subjects that are slightly outside our own discipline has the potential to be both rewarding and refreshing.

Permalink 1 comment (latest comment by Sharif Al-Rousi, Friday, 10 May 2013, 10:58)
Share post
Christopher Douce

Journey: Westminster to Walworth

Visible to anyone in the world
Edited by Christopher Douce, Monday, 28 Oct 2013, 13:39

A number of months ago I wrote a blog about buying a smartphone (I know what you're thinking: this sounds pretty boring!)  The blog ended on a question: 'where did this device come from?'  The device I'm referring to is, of course, a computer.  Such a simple question can be answered in very different ways and one way to answer it is to think about the people who played an important role in either thinking about or creating one.

This is a follow up blog post about a trip to a part of London that I had never been to visit before, but one that I have known about for quite some time.  My quest was simple: to seek out the birthplace of someone who is known as the 'great uncle' of computing.  There are, of course, many other stories and journeys that can be connected to the one that follows, and I hope that this is going to one more in a very long series of blog posts.

A journey in reverse

April has been a month of contrasts.  The first few months were absolutely freezing, but this day was enticing.  It was a day that I couldn't resist exploring a bit of my own city; taking a journey that I had been threatening to make ever since winter had descended with certainty.  I exited Westminster underground station and looked skyward, through glorious morning sunshine, quickly finding Big Ben and the houses of parliament.  In some respects, it seemed like an appropriate starting point, since government had played an important role in the life of Charles Babbage, a Victorian gentleman, mathematician, engineer and (if we can stretch it this far) raconteur.  Babbage is famous for proposing and partially designing mechanical calculating engines that echo aspects of the inner workings of today's modern day computers.

The purpose of this blog isn't so much to talk about Babbage (although he is the reason why I am writing in the first place), but more to record the trip.  When it comes to Babbage I've got numerous books and notes and read and re-read, and I think it'll take time to understand the fine detail and significance of his inventions.  In some respects, this is a journey of contextualising, or understanding.

'Excuse me, sir... we want to take a photo...', said a voice behind me.  I peered into my smartphone, thumbing at a googlemap, trying to figure out where I was.  A few paces away, the tourist had gained her view of the London Eye, and I was off, gingerly taking my first steps towards a new (albeit modest) adventure.

Within five or six minutes of walking, I had pieced another part of London together in my head.  My knowledge of the city is fragmented across three dimensions; distant childhood memories, an improving knowledge of the underground map, and a misunderstood knowledge of the monopoly board.  I recognised streets that I have previously travelled through whilst riding on my motorbike towards my office, traversing them in a different direction.  I soon knew where I was heading: I was going towards the Elephant.

Within ten minutes, I found myself at the Elephant and Castle, a bustling inner city area serviced by the Bakerloo and Northern underground lines, a train station that heads north to Kentish Town, and bus routes I had never heard of.  Remembering a series of photographs that had featured in the London Evening Standard newspaper a couple of days before, I decided to try to find a scene that I remembered.  I dived into some walkways and emerged at a train platform that overlooked one of the most notorious housing estates of the 1960s: the Heygate estate.  I know next to nothing about architecture but I do know that they Heygate was one of a number of brutalist housing estates that were built between the 60's and 70's.  Whilst on one hand there is a certain elegance and simplicity in its structures, on the other hand the structures are inhuman, stark and impersonal.  The impersonal nature was amplified since all the windows I could see were boarded up with steel shutters.  These, I thought, looking from the outside, were places to live in.  These flats didn't look like homes, and I'm sure I would have felt the same if I had visited when they were fully occupied.

I accessed the rail platform through the shopping centre.  Built in the 1960's, the shopping centre was showing its age.  In comparison to bright and airy modern malls the Elephant's shopping centre was slightly claustrophobic.  Chain stores were the exception rather than the rule, which was something I liked.  On the second floor, I decided that a well deserved up of tea was overdue, so I popped into a relatively new Polish café I had visited once before.  It's functional manner, i.e. you had to clean your own table, seemed to be entirely in keeping with the Elephant's very functional shopping centre.  I approved.

After a few false starts, I walked past the Strata (Wikipedia) tower block, around a gentle curve in the road and onto the Walworth Road.  Within five or so minutes I had found what I had been looking for; a simple blue plaque commemorating the birth of Babbage, the 'grandfather of the computer', situated on the corner of Larcom Street.  Walking down Larcom Street I discovered another blue plaque, this time commemorating the birth of Micheal Faraday and his work on electromagnetism.  Both plaques were on the side of what is now a clinic.

I took a couple of minutes to do some more exploring.  I really liked Larcom Street.  It offered a slight bend, and then revealed a quiet tree-lined road, filled with bay fronted three level Victorian terrace houses.  The hustle and bustle of Walworth Road disappeared into the background.  Cars parked aside, it felt as if I had stumbled into an oasis of history; a time warp.  Modernity came into view again when I arrived at the end of the street.  I saw modern flats on my right, recently constructed, and there was some building work going on, diggers gouging the ground in preparation for foundations.

Ten minutes later, I was back on the Walworth Road, astonished by its busyness and the single row of shops that seemed to go on and on and on.  With Larcom Street behind me, I caught sight of fast food establishments and the wonderfully eclectic East Street market which dates back, in one form or another, to the 1880s (as another blue plaque testified).  Stall holders had just about got everything ready for the day's trading by the time I had arrived.  I also accidentally found another blue plaque which celebrated the birth of another famous resident; Charlie Chapin.

My journey home took a bit of time.  Walking back to the Elephant, I passed by a fire damaged museum, and then found a bus stop on the New Kent Road - the direction of home.  This wasn't a big or exciting adventure, but it was one that was fun and has made me slightly more aware of my own city.  Moving forwards, what I've got to do is continue with my reading about Babbage and take at least three more journeys.

The next one (about Babbage) will be to the town house where he not only dreamt of mechanical computers, but also built parts of them too.  Then there's a trip to Greenwich, which relates to a key vector of inspiration that caused Babbage to start his life long quest to make a mechanical computer, and then a visit to South Kensington, where the remnants of his computing devices are currently housed.

Permalink Add your comment
Share post
Christopher Douce

Academic conduct symposium – Towards good academic practice (day 2)

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 23 Feb 2021, 18:57

This is the second post in a series of two about an academic conduct symposium that I attended at the Open University between 20 March and 21 March 2013.

The difference between the first day of the conference and the second was that the first day was more focussed towards the student and the essential role of the associate lecturer.  The second day (in my opinion!) seemed to be more focussed towards those who have the role of dealing with and working with academic conduct issues. Below is a brief summary of the three workshop sessions, followed by some final reflections on the whole symposium.

Student perspectives on good academic practice

Pete Smith from the Faculty of Education and Languages, was the facilitator for my first workshop of the day.  This session addressed a different perspective to all the previous workshops.  It aimed to ask the question:  'what is the published literature on the student perspective?  [or 'views' about academic conduct].  Pete presented what was, in essence, a short literature review of the subject.  I was really struck by the wealth of information that Pete presented (which means that I'm only going to pick out a number of points that jumped out at me).  If you're interested in the detail of the research that Pete has uncovered (which is almost akin to a masters thesis), it might be a good idea to contact him directly.

Some key notes that I've made from the session include the point that learners can perceive themselves in terms of different roles in terms of how they relate to issue of academic conduct.  There are also differences of perceived seriousness and attitudinal differences.  Factors such as topic knowledge, cultural influences, demographic variables, new technology and conflicting advice are all considered to play a part.

Multiple reasons for academic misconduct range from genuine lack of understanding, attempts to gain greater levels of efficiency, temptation, cultural differences and beliefs. 

When looking more deeply at the research it was commented that there was a lack of robust evidence about the success of interventions.  We don't know what works, and also we don't have consistent guidance about how to begin to tackle this issue.  One important perspective is that everyone is different and knowledge and understanding of a learner is needed to make the best judgement about the most approach to take.

What resources are available?

This session was facilitated by Jenny Alderman from the Open University Business School and another colleague who works in the Academic Conduct Office.

One of the reasons why academic conduct is considered to be so important is that there is an important principle of ensuring that all students are given fair and equitable treatment.  Jenny reminded us that there are considerable costs in staffing the academic conduct office, running the central disciplinary and appeal committees and supporting the academic conduct officers.

An interesting debate that emerged from this session related to the efficacy of tools.  Whilst tools such as TurnItIn can be useful, it is necessary to take time to scrutinise the output.  There will be some clear differences between submissions for different faculties.  Some more technical subject (such as mathematics) may lead to the production of assignments that are necessarily similar to one another.  This has the potential to generate false positives within plagiarism detection systems.

Key resources: code of practice for student assessment, university policy on plagiarism, developing good academic practice website (which was linked to earlier), and the skills for study website which contains a section entitled developing academic English (Skills for Study).

Other resources that could be useful include Time Management Skills (Skills for Study), Writing in your own Words (Skills for Study), Use of source Materials (Skills for Study) and Gathering Materials for preparing for your assignments (Skills for Study).

The library have also produced some resources that can be useful.  These include a video about avoiding plagiarism (which features 'Bob').  The library have some resources about digital literacy entitled 'being digital'.  There is also a plagiarism pathway (Being Digital, Open University Library), which contains a number of activities.  (At the time of writing, I hadn't seen these before - many of these resources were pretty new).

As an aside, I had some discussions with colleagues about the need to more fully embed academic English into either individual modules or programmes of study, and I was directed to a module entitled L185 English for Academic Purposes.  Two fundamental challenges that need to be overcome include that of will and resource.  This said, there are three sections of the L185 module that are available freely on-line through OpenLearn.  These are: Paraphrasing Text, Summarising Text and How to be a Critical Reader.

Since the workshop, I've also been directed towards a resource entitled, Is my English good enough?  This page contains a link to the English for OU study pages.

What works?

The final session, facilitated by Jonathan Hughes, was all about what interventions might successfully nurture good academic practice (and what we might be able to learn from student casework).

Connecting back to earlier debates surrounding the use of technology to detect plagiarism, the issue of spurious reports discussed.  In instances where we are unsure what the situation was, we were reminded that the right thing to do is refer cases to the faculty academic conduct officer. 

I've noted that academic conduct is an issue of education and an important part of this is sharing the university view of what plagiarism is.  It is also connected with the judicious application of technology in combination with human judgement and adoption of necessary of process to ensure appropriate checks and balances.  (Again, all this is from the notes that I made during the event).

During this session I remember a debate about whether it was possible to create something called a 'plagiarism proof assignment'.  One contributor said, 'if you write a question, if you can do a quick internet search for an answer, then it is a poor question'.  The point being that there is an intrinsic connection between academic conduct and good instructional design.

One question that arose was whether the university should be telling our students more about tools such as TurnItIn and Copycatch.  Another approach is, of course, to have students submit their own work through these detection tools and also permit them to see their reports (which is an approach that other institutions adopt). 

Final thoughts

This conference or symposium was very different to other conferences I've been to before.  It seemed to have two (if not more) main objectives.  The first was to inform other people within the university about the current thinking on the subject and to share more information about the various policies and procedures that the university employs.  The second was to find a space to debate the different conceptions, approaches and challenges which come with the difficult balancing act of supporting students and policing academic conduct.

In terms of offering a space that informs and facilitates debate, I felt the conference did a good job, and I certainly feel a bit more equipped to cope with some of the challenges that I occasionally face.  Moving forward, my own objective is to try my best to share information about the debates, policies and resources with my immediate colleagues. 

I came away with three take away points.  The first relates to the definition of what 'plagiarism' is.  It now strikes me that there are almost two different definitions.  One definition is the internal definition which acknowledges that students can both deliberately and inadvertently fail to acknowledge the work of others.  The other more common definition is where plagiarism can be interpreted (almost immediately) as maliciously and deliberately copying someone else with the clear intention of passing someone's work off as your own.  Although the difference is one that is very subtle, the second definition is, of course, much more loaded.

The second take away point lies with the policies and procedures.  I now have a greater understanding of what they are and the role of the academic conduct office.  I can clearly see that there are robust processes that ensure fairness in academic conduct cases.  These processes, in turn, help to maintain the integrity and validity of the qualifications.

The final take away point is that I am now a lot clearer in understanding what I need to do, from my perspective, to help both students and tutors deal with different types of academic conduct.

Copies of slides and videos are now available on the Academic Conduct Site (Open University staff only)

Permalink 1 comment (latest comment by Jonathan Vernon, Thursday, 18 Apr 2013, 21:20)
Share post
Christopher Douce

Academic conduct symposium – Towards good academic practice (day 1)

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 23 Feb 2021, 18:58

This is the first of two posts about an academic conduct symposium that I attended at the Open University between 20 March and 21 March 2013.  I'm mainly writing this as a broad 'note for self', a reminder of some of issues that emerged from the event, but I hope it will be useful for my OU colleagues and others too.

The symposium was kicked off by Peter Taylor who spoke briefly about an academic practice project that ran in 2007 which led to the last conference (which coincided with the launch of policies) in 2009.  Peter emphasised the point that the issue of academic conduct (and dealing with plagiarism cases) is fundamental to the academic integrity of the university and the qualifications that it offers.

Each day of the symposium had three parallel sessions which comprised of three different workshops.  Each workshop covered a slightly different aspect of academic conduct.  I'll do my best to present a quick summary of each one.

Keynote: Carol Bailey, EFL Senior Lecturer

Carol Bailey, who works as an English as a Second Language lecturer at the University of Wolverhampton, gave a keynote that clearly connected with many of the challenges that the symposium aimed to address. 

One of Carol's quotes that I particularly remember is a student saying, 'I never wrote such a long essay before'.  This is a quote that I can directly relate to.  It also relates to the truth that academic writing is a fundamentally challenging endeavour; it is one that requires time and experience.  To some, the process of writing can be one that is both confusing and stressful.   Students might come to study having experienced very different academic approaches to the one that they face either within the Open University or within other UK institutions - situations where the teachers provide all the resources necessary to complete study, situations where access to information technology may be profoundly limited.

When it comes to study, particularly in distance education, writing is a high level fundamental skill that is tested from the very start of a module.  Students need to quickly grasp the idiolect of a discipline and appreciate sets of subject words to begin to appreciate what is meant to become a part of a 'discourse community'.  It takes time to develop an understanding of what is meant by the 'casual elegance' of academic writing.

There is also the tension between accuracy and personal expression.  When faced with new study challenges where students are still grappling with the nuances and rules of expression, misunderstandings of what is required can potentially lead to accidental academic misconduct.  The challenge of presenting your ideas in your own voice is one that is fundamental to study within the Open University.

Hide and Seek : Academic Integrity

Liz McCrystal and Encarna Trinidad-Barnes ran what was my first workshop of the symposium.  The premise of this workshop was that 'Information is hidden and we need to seek it out'.  Encarna opened with a question, which was, 'what do you understand by academic integrity?'  Some answers included: honesty, doing it right, following academic conventions, crediting other people - all these answers resonated with all the participants.

We were then directed to some group work.  We were asked a second question, which was, 'how do you find information [about academic integrity]?'  Our group came up with a range of different answers.  Some of them were: official notes offered to tutors by module teams, the developing good academic practice site (OpenLearn version), assessment guides (also provided by the module team), helpful colleagues and representatives of module teams.

Another question was, 'when would you expect students to look at or be directed to the information?'  Answers included: ideally part of the induction process, before the first assignment, feedback from an assignment, tutorials (and associated connections with the on-line forums).  One perspective was that issues surrounding good academic practice should be an integral part of the teaching (and learning) that is carried out within a module.

A final question that I noted down was, 'is it clear what academic integrity is?'  The answer that we arrived at was information is there, but we have to actively seek it out - but there's also a responsibility by the university and for those who work for the university to offer proactive guidance (for students) too.

A useful resource that was mentioned a couple of times was Writing in your own words (OpenLearn), which contains a very useful podcast.

Plagarism: Issues, Policy and Practice

The second workshop I attended was facilitated by Anne Martin from the Faculty of Health and Social Care.  In comparison to the first workshop, this workshop had a somewhat different focus.  Rather than focussing on how to find stuff, the focus was on the importance of policies and practice.  Key phrases that I noted included: university and policy context, definitions of terms and the importance of study skills.

On the subject of process, there was some discussion about the role of a university body called the academic conduct office.  The office accepts evidence, such as reports (from plagiarism detection tools), explanations from students, script feedback, whether additional support has been arranged for a student.  An important point was made that students always have the right to appeal.

One of the (very obvious) points that I've noted is that there is no one 'gold standard' in terms of detecting academic conduct issues (there are also different ways of dealing with the issue).  The role of the associate lecturer (AL) or tutor is just as important as automated tools such as TurnItIn (website) and Copycatch. 

Technology, of course, isn't perfect, but technology can be used to highlight issues before they may become significant.

Fuzzy Lines: Determining between good and bad academic practice

The third and final workshop of the day was facilitated by Arlene Hunter and Lynda Cook.  When faced with a report from a plagiarism detection system (such as TurnitIn) it's important to ask the question of 'what has happened here?'  Very often, things are not at all clear cut.  The reports that we are presented with can be, without a doubt, very ambiguous.

During this session I was introduced to some different ways to characterise or to think about evidence that relates to academic practice.  Examples include poor paraphrasing and shadow writing, excessive use of quotations, and the use of homework sites and social networking tools.  (I now understand shadow writing to be where a writer might use different words but uses almost the same structure of another document or source).  I also remember that were was some discussion that related to the university social networking policy.   

In many (it not most) situations there is no distinct line between poor study skills and plagiarism.  A point was: if in doubt, pass it onto the academic conduct office.  On the other hand, it is an imperative to help tutors to help students to focus on developing academic writing and literacy skills.

Plenary

The final session of the day was a short plenary session which highlighted many of the issues that were brought to the fore.  These included the tension between policing academic standards whilst at the same time helping students to develop good academic practices.  There was also some debate that related to the use of tools.  The university makes use of plagiarism detection tools at the module team level and there was some debate as to whether it might also be useful to provide access to detection software to associate lecturers, since they are arguably closer to the students. 

Another challenge is that of transparency, i.e. how easy it is to get information about the policies and procedures that are used by the university.  It was also mentioned that it is important to embed the values of good academic practice within modules and that the university should continue, and ideally do more, to support its associate lecturers when it comes to instilling good academic practice amongst its students.  An unresolved question that I had which related to supporting of students whose English is a second language was touched on during the second day.

All in all, it was a useful day.  Of the two days, this first day was the one that was more closely aligned to the challenges that are faced by the tutors.  What I took away from it was  a more rigorous understanding and appreciation of the processes that have been created to both support students but also to maintain academic integrity.

Permalink
Share post
Christopher Douce

UCL : Introducing engineering and computing

Visible to anyone in the world

On 12 February 2013 I volunteered at a joint Open University and UCL event on 12 February 2013 which aimed to introduce aspects of computing and engineering to school students.  This was the first time I had been involved with this type of event.  I have started to view outreach (in the broadest sense) as something that is something that is increasingly important to do (and this is something that I have written about in an earlier blog).  So, if you're interested in hearing some about the outreach stuff that I've recently heard about, the previous blog I've posted might (or might not!) be of interest.

Structure

I learnt about this event by a colleague who was canvassing for volunteers.  Upon accepting his challenge I quickly discovered that I was to play a tiny part of what was a much bigger event and soon heard rumours that students were coming to UCL to hear about other subjects such as chemistry and engineering.  My own role was to offer some support and guidance to students who wished to learn a little bit about computing and information technology.

Not only was this, for me, my first ever time being involved in an outreach or engagement event, it was also my first ever time on the UCL campus: it was massive!  I found myself being ushered into a large computer suite in the basement of one of UCL's impressive buildings.  Within moments, our lead facilitator and lecturer, Arosha Bandara, started to outline the plan for the day.

The focus on the day was the programming language Sense, a language that is used with the Open University module TU100 My Digital Life which is a first level undergraduate module in computing.  One of the key aspects of Sense is that it works with a bit of electronics that allows different types of measurements to be made.  Arosha talked us through a program that simulated a simple etch-a-sketch game.  Students would be asked to make a change to the program so that it would work properly - they were required to do some software maintenance!  During the second part of the day, students were then required to get together in groups to think of how to the language and the sensors to do something fun.

The talking bit...

The morning began with Arosha outlining the broad concept of Ubiquitous computing (Wikipedia), namely, that computers can be everywhere, can contain sensors and can be embedded within the environment.  Arosha then introduced a programming problem (in the form of an etch-a-sketch game).  Everyone was taken through different parts of the Sense programming environment.  Key elements such as buttons, instruction palettes and sprites (graphics) were introduced.

Students were then directed to some key parts of the game that accepted inputs from Sense hardware.  Students were then shown, step-by-step, how to make a change to the game to modify the behaviour of an on-screen pen.  They could immediately see the effect of changes to their programs.  Further modifications included adding some conditions that enabled their game programs to respond to noises (such as clapping!)

The projects bit...

There were loads of things to take in during the first part of the morning.  There was a whole new programming environment, there was the concept that a computer can receive and work with signals from the outside world, and the idea that a program can be formed out of groups of instructions.

The second part of the day was all about being imaginative, thinking about the different kinds of inputs and outputs that the electronics allow, and trying to think of some kind of application or demonstration.  Students were assigned to small groups and were encouraged to come up with different ideas.

The group that I was assigned to came up with the idea of trying to build some kind of 'human sensor', perhaps creating an infra-red trip wire (the Sense board came with a number of different sensors and outputs - one of them being an infrared transmitter or detector).  We collectively thought about the different cables and sensors that we had at our disposal before beginning to play with what kinds of signals (or numbers) we could detect from the outside world.  We got a fair way with this task before our time was up.

Reflections

It was a fun day!  Although there was limited time to do real stuff, the tiny team that I was allied to wrote some simple program code that allowed a heat sensor to work.  The Sense board represented a connection between the magical world of code and software to the physical world, where measurements could be made.

One of the biggest challenges of the day was to convey such a lot of (often quite difficult) theory in such a short amount of time.  Arosha was charged with telling our students something about the different types of programming constructs, variables and graphics.  Although this was necessary to get to the point where we could all do some fun stuff (modify our program), the way that hardware was used with software certainly facilitated engagement and helped to focus our attention.

I liked the way the idea of ubiquitous computing was used as an introduction, but one additional might have been to emphasise the extent that we are surrounded by computers.  The moment you receive a telephone call, there is an unknown number of computers all working together to deliver your telephone call.  There's the computer in your mobile phone, there's a computer in the base station which speaks to other computers... at the other end, there is a similar situation.  Also, turning on the TV means starting up a pretty powerful computer that is performing millions of instructions a second which coverts signals from one format to another.  Their ubiquity and invisibility is astonishing.

What is also astonishing is that the fundamental principles of computer programming that are exposed by the Sense programming language is also shared amongst all these devices and systems.  In the same way we have ubiquitous computing, we also have ubiquitous code; computer software that run anywhere.

Being involved in this day took me back in time to the days when I first got my hands on a computer.   Although the form of a computer has changed immeasurably, some things have not changed.  Computers remain very particular and pedantic - they require patience.  It's also important to remember that to learning how to work with code can and should be fun.  But when you've created a world out of code and you understand how things work, working with them can be immeasurably rewarding too.

Permalink Add your comment
Share post
Christopher Douce

NESTA Crucible Alumni - Google UK

Visible to anyone in the world

nesta_logo.jpg

A couple of years ago I managed to find myself involved with something called NESTA Crucible (NESTA website).  Amongst other things, Crucible was a programme that was all about getting people from different disciplines together and offering some useful and practical guidance to researchers and academics.  A couple of years after the final Crucible event, NESTA funded a day which was broadly entitled 'Crucible Alumni' to enable past participants to reflect on what had happened after the programme came to an end.

It was both a fun and useful day, and I'm summarising bits of it as a blog for a couple of reasons.  The first to remember what happened (!), the second for the other people who were able to come along and third, to share something about the useful points that were discussed with a wider audience (which seems appropriate, given that engagement with different people was one of the themes of the day).

Introductions and Presentations

The event was hosted at Google's London offices.  I was interested to discover that I had been to the area in which the offices were situated, but I had no idea that this was where Google's offices were.  The day began with a brief introduction by a Googler, followed by a further brief talk by NESTA's chief exec.  We were soon into the first key part of the day where former members of the programme were able to give some short presentations using the Pecha Kucha (Wikipedia) format.

I had never witnessed the use of this technique before but, in essence, presenters were asked to give talks that contained 20 PowerPoint slides which changed every 20 seconds - a tough format, and one that forces presenters to avoid waffle!

The notes I've made accompanying the first presentations are: 'linguistic map of Glasgow', 'lego' and 'genome sequencing'.  The next presentation described some science outreach activities to schools.  The words I've used in relation to this presentation were 'chromosome carnival', 'Edinburgh festival' and 'radio programme'.  If anyone is interested in learning more, do let me know so I can put you in contact with the presenter.

The next presentation was by a Crucible contemporary called Howard Falcon-Long, who is an expert in fossil plants.  Howard talked about getting involved with some media fellowships, and has had an opportunity to write for the BBC - Howard certainly has managed to do a lot since our time on the programme. Other phrases that I've noted from other presenters include 'research in neurodisability', 'lab automation', 'life at high altitudes' and 'viruses'.  The words 'fun', 'science' and 'outreach' were also found together on the same page of my notebook. 

Collaboration and adventures in research

There were two formal(ish) presentations during the day, followed by a short group activity.  The first presentation was by Professor Kate Jones (ZSI website) from the Centre for Biodiversity and Environmental Research, UCL.  Kate holds a chair in Ecology and Biodiversity and spoke about two things: Bats and Citizen Science.

I remember seeing quite a few bats when I lived in my previous house in Sussex; they would swoop down by the side of the house, almost doing circuits of my garden before they mysteriously disappeared as quickly as they came.  Having noticed them flying around, and having been told that there are so many different types of bats out there, how might we be able to understand how many they are and, importantly, how the bat population is getting along?  Determining change requires us to take measurements, but how on earth can we measure the how many bats there are?!

Kate introduces us to something called Citizen Science (Wikipedia).  This is where an interested member of the public can play a small but important part of a wider research endeavour.  The advantages are that participants can make a contribution, it permits the exposure of different issues to a wider population and also can play an important role in informing members of the public about science.  Plus, it can be pretty fun too.

One way to count bats (I have to admit, I had never ever thought to ask this question before!) is to record the noises that they make.  Different bats make different noises.  Easy, right?  Well, you've got to capture the noises, which means driving around at certain times of the day using special recording devices.  When you've got the noises, there's then the problem of categorising or classifying the noises.  There are a few bits of technology that are being used: some kind of vehicle, a recording gadget, and GPS, a clock, a computer - and you can find quite a few in your mobile phone.

Kate introduced us to a couple of websites, iBats which is a programme about collecting bat sounds and calls from the environment, and Bat Detective which allows members of the public to start to classify recordings, thus providing useful data for the 'bat scientists'.

This kind of approach to science, the crowd sourcing of either data or analysis isn't new, but the availability of powerful computers in the form of your mobile telephone and increased availability of fast internet is facilitating the availability of new types of experiment.  One of the first citizen science projects (as far as I'm aware) is called Galaxy Zoo.  After a period of training, you are able to classify different types of galaxy that, perhaps, no one has ever studied properly before.

Whilst Galaxy Zoo can be used on a desktop PC, I also remember having heard of something called Mappiness.  This is a mobile phone application which asks you to respond to how happy you are at a particular point in time (I remember this featuring in a TED Talk I saw not so long ago, but I can't find its link).

Kate also mentioned another website called Zooniverse.  This site collates different crowd sourcing or citizen science projects together in one place.  I'm certainly struck by the breadth and diversity of the different projects. There is also, of course, an Open University biodiversity observatory project called iSpot, which has over eighteen thousand registered users.

Towards the end of last year there was a lot of press coverage about ash dieback (Wikipedia) and increased awareness of the extent to which this fungal infection is attacking ash trees in Great Britain.  The increased awareness of this problem quickly led to the development of an app called Ashtag (along with other similar projects).  Kate mentioned a website called Naturelocator which links to other projects.

Kate mentioned a project that I had heard of about six months ago through a geek news site called Slashdot.  This was a crowd sourced radiation map.  In the wake of the Japanese Tsunami and resulting nuclear accident, software developers and hardware designers created personal low-cost Geiger counters.  Citizens could were then able to take their own geo-tagged radioactivity readings that were in competition with the official measurements produced by the authorities.

An interesting (and rather obvious) thought that was inspired by Kate's presentation is that science can lead to the creation of technology which, in turn, can then lead to further science.  Technologies such as the mobile phone can (in part) democratise science (and the taking of measurements), but there is also the challenge of ensuring the quality, integrity and reliability of results.  This said (taking an open source software analogy) just as many eyes looking at the same software can potentially lead to fewer programming bugs, many data collection points can lead to more accurate and comprehensive results. All in all, a very thought provoking talk.

Soapbox Science

Seirian Sumner (Bristol University) is a scientist who is interested in bees, wasps and ants (if my notes serve me well).  Seirian also has an interest in popular science writing and sharing her enthusiasm for science with the general public.

Seirian introduced us to the idea of 'soapbox science' and presented us with a challenge - we were asked to imagine that we were at speaker's corner, Hyde Pare.  Let's say we were given a soapbox to stand on - what would you say (about science) that would draw listeners to you?  We were then asked, 'is anyone going to volunteer?'  Within minutes, around six scientists were balancing on tables trying to entice us bystanders (I didn't volunteer) to listen to what they had to say about their subject.  It was a compelling demonstration.  Any Googlers who were passing by must have wondered what was happening, and it was a miracle that the police were not called given how much shouting and impassioned speaking was going on!

Over a course of about an hour or so, we were introduced to Soapbox Science and heard what Seirian and her colleagues had been doing.  It began with a summary of a pilot, followed by a summary of an event (ZSL) that took place on the London Southbank in July 2012.

So, why do all this?  A number of reasons were put forward.  Seirian opened her presentation with what, to me, was perhaps one of the most compelling arguments.  Since scientists are primarily funded through government research grants and teach at publically funded universities, there is the argument that scientists should be giving something back and Soapbox Science is one of many ways to do this.  Other reasons includes enjoyment, understanding and making connection between science and art, public dissemination of work and raising awareness of research and subjects, inspiring others and gaining new ideas.

Towards the end of the day there was quite a debate about gender and science, and an open question of, 'if people leave science, where do they go to?'  Another thought is that although women in science was a very prominent and important theme in Seirian's work, diversity in its broadest sense (gender, socio-economic background, ethnicity and disability) is equally important.

This final presentation of the day made me reflect on whether there might be other ways to inspire people.  I started to wonder whether there was any mileage of trying to connect stand-up comedy and computer science.  I haven't got anywhere with this idea yet; it's something I'm continuing to mull over (!)

Reflections

There are two key things that I gained from this day and both of them are loosely connected to each other.  The first relates to our own discipline.  We can sometimes get so locked into our own subject and trying to solve our own little problems, whether it is creating something or taking part in a larger debate, that we can easily become entrenched in our own way of thinking about things.  Speaking to other people outside our own discipline, whatever those disciplines may be, can be very refreshing.  We're exposed to different scientific (or artistic) language, different types problems and different types of methods.  In doing so we may then become more critical of our own way of solving problems.  There are days when we become so familiar with our own subjects that they don't seem as exciting as the work that other people are carrying out.  When we begin to talk to people outside our discipline we actually realise (again) that the subjects that we find interesting are, actually, very cool.

The other point is that how much more we could each be doing.  Research, teaching and administration represent very important, necessary and all-consuming aspects of an academic role.  So much so, it is easier to forget, as Seirian pointed out, that perhaps we need to consider our role in terms of a wider responsibility too.  Science and research is very much carried out and facilitated by universities and research institutions.  I guess an important thought is that sharing can represent an opportunity for everyone who becomes involved.

Permalink Add your comment
Share post
Christopher Douce

Psychology of Programming Interest Group 2012 workshop: London Metropolitan University

Visible to anyone in the world
Edited by Christopher Douce, Wednesday, 14 Oct 2020, 11:41

The 24th Psychology of Programming Interest Group workshop was held at London Metropolitan University between 21st and 23rd November 2012.  I wasn't able to attend the first day of the workshop due to another commitment, but was able to attend the second and third days (this is a shame since I've heard from the other delegates that the first day was pretty good and yielded a number of very thought provoking presentations and discussions).  This blog post is a summary of the days I managed to attend.  I'm sharing this post with the hope that this summary might be useful to someone.

Day 2: Expertise, learning to program, tools and doctorial consortium

Expertise

The first presentation of the day was entitled, 'Thrashing, tolerating and compromising in software development' by Tamara Lopez from the Open University.  I understand thrashing to be the application of problem solving strategies in an ineffective and unsystematic way, and tolerating to be working with temporary solutions with the intention of moving a solution along to another state, and compromising: solving a problem but not being entirely happy with its solution.  An interesting note that I've made during Tamara's presentation relates to the use of feelings.  I have also experienced 'thrashing' in the moments before I recover sufficient metacognitive awareness to understand that a cup of tea and a walk is necessary to regain perspective.

The second presentation of the day was by Rebecca Yates, from LERO based at the University of Limerick.  Rebecca's talk was entitled, 'conducting field studies in software engineering: an experience report' and her focus was all about program comprehension, i.e. what happens when programmers start a new job and start to learn an unfamiliar code base.  I made a special note of her points about the importance of going out into industry and the importance of addressing ethical issues. 

One of the 'take away' points that I got from Rebecca's talk was that getting access to people in industry can be pretty tough - the practical issues of carrying out programming research, such as time, restrictions about access to intellectual property and the importance of persuasion (or making the aim of research clear to those who are going to play a part in it) can all be particularly challenging.

Learning to program

Louis Major, from the University of Keele, started the second session with a paper entitled, 'teaching novices programming using a robot simulator: case study protocol'.  Louis told us about his systematic literature review before introducing us to his robot simulator which could be used to create programs to do simple tasks such as line following and line counting.  Louis also spoke about his research method, a case study approach which applied multiple methods such as tests and interviews.

Louis also spoke about the value of robots, that they were considered to be appealing, enjoyable, exciting and robotics (as a whole subject) had a strong connection with STEM disciplines (science, technology, engineering and mathematics).  The advantage of using simulations is that there are fewer limitations in terms of space, cost and technical barriers.

A couple of months after the workshop I was reminded about the relevance of Louis's research after having been tangentially involved in an introductory Open University module, TM129 Technologies in Practice, which also makes use of a robot simulator.  Students are also given the challenge of solving simple problems, including the challenge of creating line following robots. 

The second talk in this part of the workshop was by PPIG regular, Richard Bornat.  Richard's talk, entitled 'observing mental models in novice programmers' built on earlier work that was presented at PPIG where Richard and his colleague Saeed had designed a test that was claimed could (potentially) predict whether students were able to grasp some of the principles of programming. 

An interesting observation was that when it comes to computer programming the results sometimes have a bi-modal distribution.  What this means that if student pass, they are likely to pass very well.  On the other hand, there is also a peak in numbers when it comes to students who struggle.  During (and after) his talk, he presented that some students found some of the concepts that were connected to programming (such as the assignment operator) fundamentally difficult.

Paul Orlov, who joined us all the way from St. Petersburg, spoke about 'investigating the role of programmers peripheral vision: a gaze-contingent tool and experimental proposal'.  Paul's talk connected with earlier research where experimental tools, such as a 'restricted focus viewers', were used in conjunction with program comprehension experiments. Paul's talk inspired a lot of debate and questions.  I remember one discussion which was about the distinction between attention and seeing (and that we can easily learn not to attend to information should we choose not to).

Ben Du Boulay, formerly from the University of Sussex, was our discussant.  Ben mentioned that when it came to interdisciplinary research conducting systematic literature reviews can be particularly difficult due to the number of different publication databases that researcher have to consider.  Connecting with Richard's paper, Ben asked the question about what might be the fundamental misunderstandings that could emerge when it comes to computer programming.  Regarding Paul's paper which connects to the theme of perception and attention, Ben made the point that we can learn how to ignore things and that attention can be focussed depending on the task that we have to complete.  Ben also commented on earlier discussions, such as the drive to change the current computing curriculum in schools.

One thing that learning programming can do for us is help to teach us problem solving skills.  There is a school of thought that learning programming can be viewed as how Latin was once viewed; that learning to program is inherently good for you. Related points include the importance of task and the relationship to motivation.

Tools

Fraser McKay from the University of Kent presented, 'evaluation of subject-specific heuristics for initial learning environments: a pilot study'.  In human-computer interaction (or interaction design), heuristics are a set of rules of thumb that help you to think about the usability of a system.  General heuristics, such as those by Nielsen are very popular (as well as being powerful), but there is the argument that they may not be best suited to uncovering problems in all situations. 

Fraser focused on two environments that were considered helpful in the teaching of programming: Scratch (MIT) and Greenfoot.  Although this was very much a 'work in progress' paper, it is interesting to learn about the extent to which different sets of heuristics might be used together, and the way in which a new set of heuristics might be evaluated.

Mark Vinkovitis presented the work of his co-authors, Christian Prause and Jan Nonnen, which was entitled, 'a field experiment on gamification of code quality in Agile development'.  Initially I found the term 'gamification' quite puzzling, but I quickly understood it in terms of, 'how to make software development into a game, where the output can be appreciated and recognised by others'.

The idea was to connect code development with the use of quality metrics to obtain a score to indicate how well developers are doing.  This final presentation gave way to a lot of debate about whether developers might be inclined to develop software code in such a way to create high rankings.  (There is also the question of whether different domains of application will yield different quality scores).  I really like the concept.  Gamification exposes of different dimensions of software development which has the potential to be connected to motivation.  It strikes me that the challenge lies with understanding how one might affect the other whilst at the same time facilitating effective software development practice.

Doctorial consortium presentations

Before the start of the workshop on Wednesday, a doctorial consortium session was held where students could share ideas with each other and discuss their work with more experienced (or seasoned) researchers.  This session was all about allowing students to share their key research questions with a wider audience.

Presentation slots were taken by Louis Major, Frazer McKay, Michael Berry, Alistair Stead, Cosmas Fonche and Rebecca Yates (my apologies if I've missed anyone!)  Other research students who were a part of the doctorial consortium included Teresa Busjahn, Melanie Coles, Gail Ollis, Mark Vinkovits, Kshitij Sharma, Tamara Lopez, Khurram Majeed and Edgar Cambranes.

Day 3: Tools and their evaluation and keynotes

Tools and their evaluation

The first presentation of the final day was by Thibault Raffaillac who presented his research, 'exploring the design of compiler feedback'.  I enjoyed this presentation since the feedback that software tools offer developers is fundamental to enabling them to do the job that they need to do.  A couple of questions that I've noted from Thibault's presentation included the question of 'who is the user?' (of the feedback), and what is their expertise.  Another note is that compilers (and other languages) always tend to give negative points and information.  It strikes me that languages offer an opportunity for programmers to interrogate a code-base.  Much food for thought!

Luis Marques Afonso gave the next talk, entitled 'evaluation application programming interfaces as communication artefacts'.  Understanding API usability has a relatively long history within the PPIG community.  The interesting aspect of Luis's work is that three different evaluation techniques were proposed:  semiotic inspection method (which I had never heard of before), cognitive dimensions of notations (Wikipedia) and discourse analysis (Wikipedia).  It was interesting to hear of these different methods - the advantage of using multiple approaches is that each method can expose different issues.

The final paper presentation, entitled 'sketching by programming in the choreographic language agent' was given by Luke Church, University of Cambridge.  Luke described working amongst a group of choreographers.  It was interesting to hear that the tool (or language) that had been created wasn't all about representing choreography, but instead potentially enabling choreographers to become inspired by the representations that were generated by the tool.  Luke's presentation created a lot of interest and debate.   

Keynote: extreme notation design

A computer programming language is a form of notation.  A notation is a system that can be used to represent ideas or actions and can be understood by people (such as music) or machines (as in computer programming), or both.  Thomas Green proposed a set of 'dimensions' or characteristics of notation systems which relate to how people can work with them.  These dimensions can be traded-off against each other depending upon the nature of the particular problem that is to be solved.

One challenge is: how can we understand the characteristic of trade-offs?  Alan Blackwell gave a keynote talk about a programming language that was controversially described as being a hybrid of Photoshop and Excel.

Palimpsest used the idea of different layers which could then contain different elements which could interact with each other (if I understand things correctly).  Methodologically speaking, the idea of creating a tool or a language that aims to explore the extremes of language design is an interesting and potentially very powerful one.  My understanding is that it allows the language designer to gain a wealth of experience, but also provides researchers with an example.  Perhaps there is an opportunity for someone to write a paper that compares and collates the different 'extremities' of language design.

Panel: coding and music

The final session of the workshop was all about programming, music and performance.  We were introduced to a phenomena called 'live coding', which is where programmers 'perform' music by writing software in front of a live audience. The three presentations which were contained within this final part of the day were all slightly different but all very connected.

Alex Mclean

Alex Mclean from the University of Leeds presented two demonstrations and talked about the challenges of live coding.  These included that manipulating and working with music through code is an indirect manipulation.  Syntactic glitches can interrupt the flow of performance and there is the possibility that being wrapped up within the code has the potential to detract from the music.

Live coders can also improvise with musicians who play 'non-programming language' (or 'real') instruments.  Since the notion of 'live' can have different meaning (and can depend on the abstractions that are contained within a language), challenges include the negotiation of time and harmony.  Delays can exist between the having a musical idea and realising it.

Alex mentioned Scheme Bricks, which has been inspired by Scratch (and Sense) which allows you to drag and drop portions of code together.  This also made me realise that if there are two live coders performing at the same time they might use entirely different 'instruments' (or notation systems) to each other. 

Thor Magnusson

Thor Magnusson from the University of Brighton introduced us to a language called ixi that has been derived from SuperCollider (Wikipedia).  Thor set out to make a language that could be understood by an audience.  To demonstrate this, Thor quickly coded a changing of drum and sound loops using a text editor using a notation that has come clear and direct connections to music notation.  Thor spoke of polyrhythms and code to change amplitude, to create harmonics and sound that is musically interesting. 

What I really liked was the metaphor of creating agents which 'play' fragments of code (or music).  Distortions can be applied to patterns and patterns can be nested within other patterns.  Thor also presented some compelling description of the situations in which the language is used; 'programming in a nightclub, late at night, maybe you've had a few beers; you're performing - you've got to make sure the comma is in the right place'.  For those who are interested, you can also see a video recording of Thor giving a live coding performance (YouTube).  In my notebook I have written something that Thor must have said: 'I see code as performance; live coding is a link between performance and improvisation'.

Sam Aaron

When Sam began his short talk, I couldn't believe my eyes - he was using a text editor called Emacs! (Wikipedia).  The last time I used Emacs was when I was a postgraduate student where it persistently confused me.  Emacs, however, uses a language called Lisp which is particularly useful for live coding, since it is a declarative language. 

During his talk Sam gives a brief introduction to Overtone.  You can see a video of a similar introduction to overtone through Vimeo.  One thing that did strike me was way in which aspects of music theory could be elegantly represented within code.

Discussion

This final part of the workshop gave way to quite a lot of energetic debate.  There appeared to be a difference between those who were thinking, 'why on earth would you want to do this stuff?' and, 'I think this stuff is really cool!'  When it comes to live coding there is the question of who is the user of the language - is it the performer, or is it the listener, or viewer (especially if a live coding notation is intended to be understandable by a non-musician-coder)?

But what of the motivations of the people who do all this cool stuff?  When it comes to performance there is the attraction of 'being in the moment', of using technology in an interesting and exciting way to creating something transitory that listeners might like to dance to.  It certainly strikes me that to do it well requires skill, time, persistence and musicality; all the qualities that 'traditional' musicians need.  Live coders can also face the fundamental challenge of keeping things going when things begin to sound a bit odd, to create new and creative code structure on-the fly, and an ability to move from one semi-improvised (by means of programming and musical abstraction) to another.

Other than the performance dimension, there is the intellectual attraction of changing and challenging people's perceptions of how software and programming languages are thought of.   Another dimension is the way that technology can give rise to a community of people who enjoy using different tools to create different styles of music.  All of the tools that were mentioned within the final part of the day are free and open source.  Free code, it can be said, can lead to free musical expression.

Reflections

Like other PPIG workshops this workshop had a great mix of formal presentations, more informal doctorial sessions mixed with many opportunities for discussion.  I think this was the first time that the workshop was held at London Metropolitan University.  Yanguo Jing, our local conference chair, did a fabulous job at ensuring that everything ran as smoothly as possible.  Yanguo also did a great job at editing the proceedings.  All in all, a very successful event and one that was expertly and skilfully organised.

There are two 'take home' points that have stuck in my mind.  The first is that programming languages need not only about programming machines; through their structures code can also be used as a way to gain inspiration for other endeavours, particularly artistic ones.  

The second point is that programming can be a performance, and one that can be fun too.  The music session with certainly stick in my mind for quite some time to come.  Programming performances are not just about music - they can be about education and creation; code can be used to present and share stories. 

Permalink Add your comment
Share post
Christopher Douce

Open University Disability Conference 2012

Visible to anyone in the world
Edited by Christopher Douce, Monday, 19 Nov 2012, 18:27

On 14 November 2012 I attended the Open University Disability Conference held at a conference centre close to the university.  The last time I attended this event was back in 2010.   I wrote a summary of the 2010 conference which might be useful to some (I should add that I've had to mess around a bit to get a link to this earlier summary and there is a possibility that this link might go to different posts since I can't quite figure out how to get a permalink, but that's a side issue...)

The conference was a two day event but due to other things I had to be getting on with I could only attend one of the days.  From my experience of the first conference, the second day tends to be quite dramatic (and this year proved to be no exception).

The legacy of the Paralympics

Julie Young from Disabled Student Services kicked off the day by introducing Tony O'Shea-Poon, head of equality and diversity.  Tony gave a presentation entitled 'A lot can change in 64 years' which described the history of the Paralympic games whilst at the same time putting the games into the context of disability equality.

During the Paralympics I remember a television drama that presented the origins of the games.  Tony reminded us that it began in 1948 at the Stoke Mandeville Hospital.  The first ever Paralympic games (with the 'para' meaning 'alongside') taking place in Rome in 1960.

One of the striking aspects of Tony's presentation is that it was presented in terms of 'forces'; forces which have increased the awareness of issues that impact upon the lives of people with disabilities.  Relating back to the origins of the games, one force is the allies of people with disabilities.  There is also the role that role models can play, particularly in popular media.

Two other forces include disabled peoples involvement and the disability rights movement.  Tony spoke about something that I had not known of before.  During the late 1980s I remember a number of public 'telethon' events - extended TV shows that aimed to raise money for charitable causes.  In 1992 there was a campaign to 'block telethon'.  This is a message that people with disabilities should have rights, not charity.  This connects with a movement away from a more historic medical and charity model of disability to a social model where people with disabilities should have an equal rights and opportunities within society. Tony also mentioned the importance of legislation, particularly the disability rights commission, explicitly mentioning role of Sir Bert Massie.

Tony brought us to the present day, emphasising not only recent successes (such as the Paralympic games), but also current challenges; Tony drew our attention to protests in August of this year by disabled people against government cuts.   Legitimate protest is considered to be another force that can facilitate change.

Deb Criddle: Paralympian

Jane Swindells from the university disability advisory service introduced Deb Criddle (Wikipedia), paralympian gold and silver medallist.  Deb gained one gold medal and two silver medals in London 2012, as well as gaining gold medals in Athens.

This part of the day took the form of a question and answer session, with Jane asking the first questions.  Deb reflected on the recent Paralympic games and described her personal experiences.  One of the key points that Deb made was that it was great that the games focussed people's attention on abilities and not disabilities.  It also had the effect of the making disability more normalised.

One thing that I remember from living in London at the time of the Olympics and Paralympics is that people were more open to talking to each other.  Deb gave us an anecdote that the games created opportunities for conversations (about and with people with disabilities) which wouldn't have otherwise happened.  

Deb said that she 'wasn't expecting the support we had'.  On the subject of support she also made an important point that the facilities and support services that are available within the UK are very different to the facilities that are available in other countries.  At the time of the Paralympics I remember reading stories in the London Metro (the free newspaper that is available ever week day morning) about campaigners who were trying to obtain equipment and resources for some of the competitors.

Deb also shared with us aspects of her personal story.  She said that through accident and circumstance led to opportunities, journeys, growth and amazing experiences.  What was once a passing interest (in equestrianism) became a central interest.  Deb also spoke about the challenge of confronting a disability.  One of Deb's phrases strongly resonated with me (as someone who has an unseen disability), which was, 'I hadn't learnt to laugh at myself'.

Deb is also an OU student.  She studied at the same time as training.  Deb said, 'study gives you something else to focus on... trying too hard prevents you to achieving what you need to [achieve], it is a distraction in a sense'.  She also emphasised the point that study is can often be hard work.

I've made a note of a final phrase of Deb's (which probably isn't word for word) which is certainly worth repeating; its message is very clear: 'please don't be overwhelmed by people with disability; people coming together [in partnership] can achieve', and also, 'take time to engage with people, you can learn from their stories, everyone is different'.

Workshops

Throughout the conference there were a couple of workshops, a number of which were happening in parallel.  I was only able to attend one of them.  The one I chose was entitled 'Asperger's syndrome: supporting students through timely interventions', facilitated by Martina Carroll.  The emphasis on this workshop was about providing information to delegates and I've done my best to summarise the key points that I picked up.

The first point was that people who may have been diagnosed with Asperger's syndrome can be very different; you can't (and shouldn't) generalise about the abilities of someone who may have a diagnosis.   

The workshop touched upon the history of the syndrome.  Martina mentioned Leo Kanner (Wikipedia) who translated some work by Hans Asperger.  Asperger's is understood as a developmental disorder that has a genetic basis (i.e. highly heritable). Martina mentioned a triad of impairments: communication difficulties (both expressive and receptive), potential difficulties with social interaction, and restricted and repetitive behaviours.  A diagnosis will be considered to have two out of the three potential impairments.

Martina also touched upon that some people can have exceptional skills, such as skills in memory and mathematics, but again, it is important to remember that everyone is different.  Due to the nature of the triad of impairments, co-existing conditions need to be considered, such as such as stress, anxiety and depression.

A final question is what accommodations can be made for people who have autism? TEACCH (Wikipedia) was mentioned, which is an educational model for schools which has the potential to offer some useful guidance.  One key point is that providing learning materials that have a clearly defined structure (such as the module calendar) can certainly help everyone.

Towards the end of the session, there was some time for group discussions.  The group that I was (randomly) assigned to discussed the challenges of group work, how important it was to try to facilitate constant communication between different people (which include mentors and advocates) and challenges surrounding examinations and assessment. 

There are a number of resources that were mentioned that may be useful.  I didn't know this, but the Open University runs a module entitled Understanding the autism spectrum (OU website). The module is centred around a book by Ilona Roth called Autism in the 21st Century (publishers website).  Another resource is Francesca Happe's Lecture at the Royal Society, entitled When will we understand Autistic Spectrum Disorders? (Royal Society website) I really recommend this lecture - it is very easy to follow and connects very strongly with the themes of the workshop.  There is also the National Autistic Society website, which might also be useful.

Performance

The final part of the day was very different.  We were introduced to three stand-up comics.  These comics were not disabled comics, they were comics who just happened to incidentally have a disability.  Comedy has the ability to challenge; it allows others to see and understand instances of people's lives in a warm and undeniably human way.  The 'something' that we all have in common with each other is an ability to laugh.  When you laugh at a situation that is tough and challenging and begin to appreciate the absurdity and richness of life. Tough situations don't seem as difficult anymore; laughter gives you a power to rise above a situation.  In a way, the conference reflects this since it was all about sharing experience with a view to empowering and helping people.

The comics were Steve Day, Liam O'Caroll and Lawrence Clark.  All were fabulous, but I especially enjoyed Lawrence's set which I understand was a show that he took to the Edinburgh Festival.  His set had a theme based on the word 'inspiring'; he successfully sent himself up, along with others who may be inclined to use that word.

Reflections

Julie Young closed the conference by emphasising some of the themes that were explored through the conference.   Julie emphasised the importance of working together to deliver a service for our students and how this is connected with equality and rights.  A key point is that the abilities our students are what really matters.  Julie went on to emphasise the continued need to listen attentively to those who we serve.

With conferences that have multiple parallel sessions you can sometimes feel that you're missing out on something, which is always a shame.  During the lunch break, I heard how other delegates had appreciated hearing from students talking about their experiences of studying at the Open University.  Personal stories allow people to directly connect with the challenges and difficulties that people face, and whilst on one hand there may be successes, there are other situations in which we don't do the best that we can or support for people doesn't arrive on time.  Conferences such as these emphasise the importance of keeping our attention on students with disability whilst at the same time emphasising that different departments of the university need to talk to each other to ensure that we can offer the best possible support.  Talking also permits us to learn more about what we can do to change things, so meetings such as these are invaluable.

I also have a recollection from the previous conference I attended.  I remember talking to someone (I'm not sure who this was) who seemed to express surprise that I was from a 'faculty' (i.e. an academic) as opposed to a part of the university that was directly involved in support of students (I tend to conflate the two roles together).  I was surprised that my presence caused surprise.  Although this year I felt that there were more faculty representatives coming along than perhaps there were before, I do (personally) feel that there should be a broader spectrum of delegates attending.

All in all, I felt that I benefitted from the day.  I met people who I had never met before and the objectives of facilitating communication, sharing practice and re-energising delegates had clearly been met. 

Permalink 1 comment (latest comment by Jonathan Vernon, Friday, 23 Nov 2012, 18:09)
Share post
Christopher Douce

First Open University Sense Programming Workshop

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 8 Oct 2013, 12:23

The first Open University Sense Workshop was held at the London School of Economics on Saturday 11 November 2012.

Sense is a computer programming language that has been derived from Scratch, a language that was developed by Massachusetts Institute of Technology.   The aim of the Sense workshop was to allow TU100 My Digital Life students to become more familiar with the Sense environment helping them to learn some of the fundamental principles of computer programming.

This blog post is intended as a summary of the first ever Sense workshop.  It has been written for both students and tutors. If you feel that anyone might find this summary useful, please don't hesitate to distribute widely.

Introductions

The phase 'computer programming' is one that can easily elicit an anxious response.  Programming is sometimes seen as something that is done through a set of mysterious tools.  The good news is that once you have gained some understanding of the fundamental principles of programming (and how to tackle problems and debug programs), the skills that you learn in one language can be transferred between other languages.

Sense is a programming language that uses the same fundamental concepts of languages that are used in industry (such as C++ and Java) but Sense makes the process of writing computer programs (or code) easier by allowing programs to be created from sets of visual building blocks. In some ways, Sense is a visual programming language that is completely analogous to many other languages.  The fundamental difference between Sense and other languages is that it helps students to focus on the fundamental bits of programming by shielding new programmers from the difficulty of writing program instructions in a language that can be quite cryptic and difficult to understand.

The overarching intention of the Sense workshop day (that is described here) was to demystify Sense and encourage everyone to have fun.  The Sense environment allows programming instructions to be manipulated as a series of lego-like blocks.  These snap together to form 'clumps' of instructions which can be attached to either a background (or stage, where things can more about on), or sprites (which are, in essence, graphical objects).  Through Sense it is (relatively) straightforward to create sets of instructions to build simple animations and games.

The workshop is divided up into three different sections.  The first is a broad overview of some of the ideas about programming, followed by a demonstration about how to use the Sense environment.  The second section was a presentation which contained some useful guidance about how to complete an assignment.  The third section was more open... but more of this later.

The lecture bit - stepping towards programming...

The workshop kicked off by a talk by one of our Open University tutors, Tammy.  Tammy made a really good point that 'we can't teach you programming'.  The implication is that only a student can learn how to do it.  The best way to learn how to do it is, of course, to find the time to play with a programming environment and to tackle, head on, the challenge of grappling with a problem.

Tammy asked a couple of people to come up and draw some shapes on the whiteboard.  Different participants drew very different shapes despite being given exactly the same instructions.  The point of the exercise was clear: that it is absolutely essential to provide sets of instructions that are both completely clear and unambiguous (as otherwise you may well be surprised with the results that you come back with).

Tammy talked about the different categories of program instruction, which were: sequence instructions, selection instructions and iteration instructions.  Pretty much all programs are composed of these three different types of operations.  Put simply, a sequence of instructions is where you do one thing after another.  A selection operation is where you make a choice to do something depending upon the status of a condition (for example, if you are cold, you might turn the heating on).  An iteration operation is where you do something either a number of times.

These sets of operations can be used to describe every day actions, such as making a cup of coffee, for instance.  This simple activity can be split into a sequence of steps, which can include iterations where we check to see if the kettle is boiling.  (We might also do some parallel processing, such as making some toast whilst the kettle is boiling, but multi-threading is a whole other issue!)

The main points were (1) programming cannot be taught, it can only be learnt by those who do it, (2) there are some fundamental building blocks that can be combined together and nested within each other; you can have a sequence of steps within an iteration, for instance, and (3) programming requires things to be defined and described unambiguously.

The demonstration bit - creating an animation...

The second part of the morning was hosted by Leslie.  Building on Tammy's summary of programming Leslie showed us what it meant to actually 'write' a program using the Sense environment.

In some respects, you can create anything within the Sense environment.  It provides a set of tools and it is up to you to come up with an idea and figure out how to combine the pieces together to do what you want to do.  In some respects (and getting slightly philosophical for a moment), you can define a whole universe or a world in software.  You can, in effect, define your own laws of physics.  I can't remember who said it, but I have always remembered the phase, 'the universe is mathematical'.  Given that computers only understand numbers, the Sense environment allows you to create and represent your own universe (and interact with it in some way).

Leslie's universe was a fishtank.  She began by drawing the tank, including water weeds.  She then went onto draw a set of different fish characters.  Script was then added to move the fish around the screen (in the tank), first in one direction (from left to right), and then in both directions (from side to side).  Leslie then added more characters and defined interactions between them using something called the 'broadcast' feature to alert some of the virtual fish that a bigger and more dangerous fish had arrived in the tank.

What was really great was how she demonstrated how to connect different instructions together (to create sequences), to have sequences of instructions operate when certain conditions are met (which represent selections), and introduce repeat loops (which represent iterations; carrying out the same instructions over and over again).

The bit about the assignment...

The final 'lecture' part of the day was by Open University tutor Dave, who took everyone through the structure of the forthcoming assignment (without giving any of the answers).  Dave talked about the use of the on-line discussion forums and this gave way to an interesting discussion about the importance of referencing.  Other points that were mentioned included the importance of things such as including word counts (on the TMA), and the learning objectives that are used by the module.

The programming bit...

During the afternoon, we all split into two different groups and got together into small groups of between two and four people.  The intention of the second part of the day was to try to create a small Sense project by huddling around a single laptop on which the Sense environment had been installed. We would then work on something for an hour, and then we would present what we had done to the other groups, describing some of the problems and challenges that we had encountered along the way.

Not having had much experience at using Sense, I was very happy to play an active role within one of the groups.  One of my main intentions at coming along for the day was to learn more about how to use the language and discover more about what it was capable of.  Our group came up with two different ideas: a representation of a car race track and some kind of athletic game or animation.  We settled on the athletic theme and decided we would try to animate a man running around a very simple athletics track.  (Our track became a square as opposed to an oval shape since we decided that re-discovering the mathematics of the circle was probably going to be quite tricky to master in about an hour!)

Within an hour we had drawn some stick figures, got our character doing a really simple 'run' animation and had our figure run around a really simple athletics track.  From memory, one of the challenges was figuring out how to represent program state and have it shared between different scripts that were running within the same sprite (apologies for immediately going into Sense-speak!)  Another challenge was to figure out how to represent state with Boolean variables and have those embedded within a continuous loop (but given enough time, I'm sure that we would have cracked it!)  A final challenge (and surprise) was to understand that the Sense environment automatically 'remembered' how much a character had been rotated between the different times that we 'ran' our scripts.  (We had instances where our running character ran off the side of the screen, much to our surprise!)

After our time was up, we were all asked to demonstrate and talk through our various projects.  I can remember a simple etch-a-sketch game, a demonstration of some bouncing balls (which bounced at different speeds), a space invader game (where the invader was a cat), a Tom and Jerry animation where Tom chased Jerry across a screen, and an animation that involved a balloon and a plane.   It was great to see very different projects since when we were coding our own, we can easily get into the mindset of just solving our own problem; seeing the work of others is something that is very refreshing.  It was inspiring to see what could be created after an hours of programming.

Reflections

The whole day reminded me of the time when I first tried to learn computer programming and I still remember that it was a pretty difficult challenge (in my day!)  I always wanted to rush ahead and solve the bigger more exciting problems but I was often tripped up because I needed to understand the operation of the fundamental instructions and operators (and the way a language worked).  In my own experience the only way to really understand how things work is to find the time to play, to explore the various operators and instructions, but finding both the time and the confidence to do this is perhaps a challenge itself.

All in all, the first Sense Workshop was a fun day.  I certainly got a lot out of it and I hope that everyone did too.  I certainly hope this is going to become a bi-annual event for all our TU100 students.  From my 'I've never really used Sense before to do anything other than to run a demo program' perspective, I certainly came out learning a lot more than I did when I started.  Large parts of Sense was demystified, and I certainly had a lot fun attending.

Additional resources

After sharing a link to this post my colleague Arosha (who also came along to the Sense workshop) has written a short blog post.  Arosha is loads more skilled when it comes to Sense programming and has re-created one of the projects that were demonstrated on the day.  Thanks Arosha!

Permalink
Share post
Christopher Douce

Mathematics, Breaking Tunny and the First Computers

Visible to anyone in the world
Edited by Christopher Douce, Monday, 15 May 2017, 12:11

Pciture of the Colossus computer

One of my interests is the history of computing. This blog post aims to summarise a seminar that as given by Malcolm MacCallum, University of London, held at the Open University on 30 October 2012.  Malcolm used to be the director of the Heilbronn Institute for Mathematical Research, Bristol.  Malcolm began by saying something about the institute, its history and its research.

This blog complements an earlier blog that I wrote to summarise a lecture that was given at City University.  This earlier lecture was entitled Breaking Enigma and the legacy of Alan Turing in Code Breaking and took place back in April 2012, and was one of a series of events to celebrate the centenary of Alan Turing's birth.  Malcolm's talk was similar in some respects but had different focus: there was more of an emphasis on the story that led to the development of what could be arguably one of the world's first computers.

I'm not going to say much about the historical background that is obviously connected with this post, since a lot of this can be uncovered by visiting the various links that I've given (if you're interested).  Instead, I'm going to rush ahead and introduce a swathe of names, terms and concepts all of which connect with the aim of Malcolm's seminar.

Codes, Cyphers and People

In some respects the story of the Enigma code, which took place at the Government Code and Cypher School, Bletchley Park, is one that gains a lot of the historical limelight.  It is easy to conflate the breaking of the Enigma code (Wikipedia), the Tunny code (Wikipedia) and the work of Alan Turing (Wikipedia).  When it comes to the creating of 'the first computer' (quotes intentional), the story of the breaking of the Tunny code is arguably more important. 

The Tunny code is a code generated by a device called the Lorenz cypher machine.  The machine combined transmission, encryption and decryption.  The Enigma code was very different.  Messages encrypted using Enigma were transmitted by hand in morse code.

I'm not going to describe much of the machines since I've never seen a real one, and cryptography isn't my specialism.  Malcolm informed us that each machine had 12 wheels (or rotors).  Each wheel had a set of cams that were set to either 1 or 0.  These wheel settings were changed every week or month (just to make things difficult).  As each character is transmitted, the wheels rotate (as far as I know) and an electrical circuit is created through each rotor to create an encrypted character.  The opposite happens when you decrypt: you put in an encrypted character one side and a plain text (decrypted) character magically comes out the other side.

For everything to work, the rotors for both the encrypting and decrypting machines have to have the same starting point (as otherwise everything will be gibberish).  These starting points were transmitted in unencrypted plain text at the start of a transmission

Through wireless intercept stations it was possible to capture the signals that the Lorenz cypher machines were transmitting.  The codebreakers at Bletchley Park were then faced with the challenge of figuring out the structure and design of a machine that they had never seen.  It sounds like an impossible challenge to figure out how many rotors and wheels it used, how many states the rotors had, and what these states were.

I'll be the first to admit that the fine detail of how this was done pretty much escapes me (and, besides, I understand that some of the activities performed at Bletchley Park remains classified).  What I'm really interested in is the people who played an important role in designing the physical hardware that helped with the decryption of the Tunny codes.

Depths and machines

Malcolm hinted at how the codebreakers managed to begin to gain an insight into how the Lorenz machine (and code) worked.  He mentioned (and I noted) the use of depths (Wikipedia), which is where two or more messages were sent using the same key (or machine setting).  Another note that I made was something called a Saltman break, which is mentioned in a book I'll reference below (which is one of those books which is certainly on my 'to read' list).

Malcolm mentioned two different sections of Bletchley Park: the Testery (named after Ralph Tester), and the Newmanry (named after Max Newman).  Another character that was mentioned was Bill Tutte who applied statistical methods (again, the detail of which is totally beyond me and this presentation) to the problem of wheel setting discovery.

It was realised that key aspects of code breaking could be mechanised.  Whilst Turing helped to devise the Bombe (Wikipedia) equipment that was used with the decryption of the Enigma code, another machine called the Heath Robinson (Wikipedia) was built.

One of the difficulties with the Heath Robinson was its speed. It made use of electromechanical relays which were slow, restricting the code breaking effort. A new approach was considered: the creation of a calculating machine that made use of thermionic valves (a precursor to the transistor).  Valves were perceived to be unreliable but it was realised that if they were continually powered up they were not stressed.

Colossus

Tommy Flowers (Wikipedia) engineered and designed a computer called Colossus (Wikipedia), drawing experience gained working at the Dollis Hill Post Office research station in North London.  

Although Colossus has elements of a modern computer it could be perhaps best described as a 'special purpose cryptographic device'.  It was not programmable in the same way that a modern computer has become (this is a development that comes later), but its programs could be altered; perhaps by changing its circuitry (I don't yet know how this would work).  It did, however, made use of familiar concepts such as interrupts, it synchronised its operation by a clock-pulse, stored data in memory, used shift registers and did some parallel processing.  Flowers also apparently introduced the term 'arithmetic and logic unit'.

Colossus was first used to break a message on 5 February 1944.  A rather different valve based calculator, the ENIAC (Wikipedia), built by the Moore School of Electrical Engineering, University of Pennsylvania, was used two years later.

Final points

Malcolm told us that ten Collosi were built (I might have spelt that wrong, but what I do know is that Collosus-es certainly isn't the right spelling!), with the last one being dismantled in 1960.  A total of twenty seven thousand messages were collected, of which thirteen thousand messages were decrypted.  Malcolm also said that Flowers was 'grossly under rewarded' for his imaginative and innovative work on Colossus.  I totally agree.

Research into the Colossus was carried out by Brian Randell from the Univerisity of Newcastle in the 1970s.  A general report on the Tunny code was only recently released in 2000.  Other sources of information that Malcolm mentioned was a book about the Colossus by Jack Copeland (Wikipedia)  (which is certainly on my 'to read' list), and a biography of Alan Turing by Andew Hodges (Wikipedia).

Malcom's talk reminded me of how much computing history is, quite literally, on our doorstep.  I regularly pass Bletchley on the way to the Open University campus at Milton Keynes.  There are, of course, so many other places that are close by that have played an important role in the history of computing.  Although I've already been twice to Bletchley Park, I'm definitely going to go again and take a longer look at the various exhibits.

(Picture: Wikipedia)

Permalink 1 comment (latest comment by Robert McCune, Monday, 12 Nov 2012, 12:23)
Share post
Christopher Douce

Accessibility workshop: modules and module team representatives

Visible to anyone in the world
Edited by Christopher Douce, Sunday, 2 May 2021, 12:46

For reasons that currently escape me, I seem to have found myself on three different module teams where I have some responsibility for accessibility.  The first two are design modules (design and innovation qualification) that are currently being developed by the university.  The third is M364 Fundamentals of Interaction Design, a module that I have tutored since its launch in 2006. 

I've been asked to write what is called an accessibility guide for the design modules.  For M364, I was asked to attend an accessibility workshop that was held on 17 October 2012 at the university in Milton Keynes.  This blog post is a rough set of notes that relate to this event (which was intended to inform and help those who are charged with writing an accessibility guide).  As well as being an aide memoir for on-going work, I hope that it might be useful for my H810 Accessible online learning: supporting disabled students groups who may be confronted with similar challenges.  Furthermore, I hope that the summary may be of use to come of my colleagues.

Setting the scene

The workshop began with a bit of scene setting.  Accessibility and support for students with disabilities is provided by a number of different parts of the university.  These include Disabled Student Services, the Institute of Educational Technology (IET) who offer internal consultancy and advice, and the Library.  Responsibility also lies with faculties, such as the Faculty of Mathematics Computing and Technology in which I am primarily based.  Accessibility, it is said, is closely connected with one of the key objectives of the university: to be open to people.

We were all reminded for the fundamental need to anticipate the needs of students during the module production process.  This is especially important at the moment since there are a significant number of modules that are currently in production.  We were also reminded that a tension between content and accessibility can sometimes arise.  Academics may wish to present materials and suggest activities that may be difficult for some learners to engage with, for example.  There is the need to consider the implications of module design choices.

The types of anticipatory adjustments that could be made include figure descriptions, transcripts for videos, subtitling, alternative learning activities and the provision of alternative formats.  It should always be remembered that alternative formats, such as documents supplied in Word, PDFs and ePub formats have the potential to help all students.  Alternative formats (as well as standard provision of materials, such as those offered through the university virtual learning environment) can be consumed and manipulated by assistive technologies, such as screen readers, screen magnifiers, for example.  Other relevant assistive technologies that can be applied include voice recognition software and mobile devices.

Further scene setting consisted of painting a rough picture of the different types of disabilities that are declared by students.  I was interested to learn that only a relatively small number of broad categories make up the majority of declarations.  Although putting people in boxes or categories can be useful in terms of understanding the bigger picture, it's always important to remember that the challenges and conditions that people face can be very varied.  By way of additional information (and guidelines) I also remember a reference to a document by the Quality assurance agency (QAA) entitled code of practice for the assurance of academic quality and standards in higher education, Section 3: Disabled students (QAA website).  This might be worth a look if you are especially interested in these kinds of policy documents and guidance that relate to higher education.

It was also stated that it is important to consider accessibility as early as possible in the module design process.  The reason for this should be obvious: it is far easier to include accessibility during the early stages of the design of a new module than to it is to retrofit accessibility into an existing structure.  This takes us onto one of the aims of the workshop; to explore the role of a dedicated accessibility co-ordinator who sits on a module team.  One of the responsibilities of a co-ordinator is to write an accessibility guide for a module.

Responsibilities of a module team accessibility co-ordinator

Our first main activity of the day was to consider and discuss the different responsibilities of an accessibility co-ordinator.  Working in a small group, we quickly got stuck in.  We soon discovered that we had pretty different roles and responsibilities within the university.

The responsibilities that we considered were important were the necessity supporting module authors and liaise with colleagues, keeping track of what learning materials are being produced within a module and actively obtain support and guidance from different departments where necessary.  A fundamental responsibility was, of course, to produce an accessibility guide (which is now an important part of the module production process).

A co-ordinator must have an understanding of different sources of information, know how modules are produced, know something about the module material and have some facilitating and project management skills.  An ability to write clearly and succinctly is also important too!

Looking and some guides

After a period of discussion about the role of the co-ordinator, we then went onto have a look at a set of different accessibility guides with a view to trying to summarise what works well and what could be done better. 

Accessibility guides for individual modules are now being written for every new module.  The first module that had an accessibility guide was U116 Environment: journeys through a changing world. This was followed by TU100 My digital life.  A very detailed accessibility guide is also available for H810.

A fundamental question is: what is the purpose of the guide and who is it aimed for?  My understanding is that it can be used by a number of different people, ranging from learning support advisors who help students to choose modules, through to tutors and students.  It is a document for different audiences.

One thing that struck me that we don't yet have the perfect document, structure or system to provide all the information that everyone needs.  This very much reflects my own understanding that accessibility isn't producing a document or a standard or set of instructions.  Instead, it is more of a process where the artefacts can mediate and reflect interaction between people who work together to provide effective support.

One of the key difficulties that we uncovered was that there is an obvious tension between generic and specific advice.  There is a clear risk of offering too much information which has the potential to overwhelm the reader, but in some instances potential students may have very specific questions about the accessibility of certain aspects of a module.

I've made a note of some of the shared conclusions and assumptions about the purpose of a module accessibility guide.  Firstly, the guide is there to highlight accessibility challenges.  It should also say something about what alternative resources are available and also offer information and guidance about how to support students.

One really important question that was asked was: at what point in the module production should we create this?  The answer is writing the guide should happen during the module production process.  This allows the co-ordinator to be involved with the module development and allow potential accessibility problems to be addressed early.  

Moving forwards

I found the workshop useful.  One of the main conclusions was that there needed to be more clarity about the role of an accessibility co-ordinator.  I understand that the results from the discussions have been noted and there may well be follow up meetings.

Accessibility (as well as support for individual students) is something that needs to be owned by individuals.  Reflecting my understanding that it is a process, the guide is needed to be something that needs to be refreshed as a module team gains more experience over the years in which a module is delivered.

One thing is very clear for me.  Given my role as co-ordinator on a couple of modules, I clearly need to get more of an appreciation as to what is going on so I can then consider the kinds of potential challenges that students may face. 

A key challenge is to understand the (sometimes implicit) assumptions that module teams make about the extent of adjustments that can be made and present them in a way that can be understood to different audiences.  This strikes me as a pretty tough challenge, but one that is very important.

Permalink 1 comment (latest comment by Jonathan Vernon, Tuesday, 6 Nov 2012, 17:58)
Share post
Christopher Douce

Xerte Project AGM

Visible to anyone in the world
Edited by Christopher Douce, Monday, 18 Feb 2013, 19:13

Xerte is an open source tool that can be used to create e-learning content that can be delivered through virtual learning environments such as Moodle.  This blog post is a summary of a meeting entitled Xerte Project AGM that was held at the East Midlands Conference Centre at the University of Nottingham on 10 October 2012.  The purpose of the day was to share information about the current release about the Xerte tool, to offer an opportunity to different users to talk to each other and also to allow delegates to gain some understanding about where the development of the tool is heading.

One of my main motivations for posting a summary of the event is to share some information about the project with my H810 Accessible online learning: supporting disabled students tutor group.  Xerte is a tool that is considered to create accessible learning material - this means that the materials that are presented through (or using) Xerte may be able to be consumed by people who have different impairments. One of the activities that H810 students have to do is to create digital educational materials with a view to understanding what accessibility means and what challenges students may face when the begin to interact with digital materials.  Xerte can be one tool that could be used to create digital materials for some audiences.

This blog will contain some further description of accessibility (what it is and what it isn't); a subject that was mentioned during the day.  I'll also say something about other approaches that can be used to create digital materials.  Xerte isn't the beginning and end of accessibility - no single tool can solve the challenge of creating educational materials that are functionally and practically accessible to learners.  Xerte is one of many tools that can be used to contribute towards the creation of accessible resources, which is something different and separate to accessible pedagogy.

Introductions

The day was introduced by Wyn Morgan, director of teaching and learning at Nottingham.  Wyn immediately touched upon some of the objectives of the tool and the project - to allow the simple creation of attractive e-learning materials.

Wyn's introduction was followed by a brief presentation by Amber Thomas, who I understand is the manager for the JISC Rapid Innovation programme.  Amber mentioned the importance of a connected project called Xenith, but more of this later.

Project Overview

Julian Tenney presented an overview of the Xerte project and also described its history.  As a computer scientist, Julian's unexpected but very relevant introduction resonated strongly with me.  He mentioned two important and interesting books: Hackers, by Steven Levy, and The Cathedral and the Bazaar by Eric S Raymond.  Julian introduced us to the importance of open source software and described the benefit and strength of having a community of interested developers who work together to create something (in this case, a software tool) for the common good.

I made a note of a number of interesting quotes that can be connected to both books.  These are: 'always yield to the hands on' (which means, just get on and build stuff), 'hackers should be judged by their hacking', 'the world is full of interesting problems to be solved', and 'boredom and drudgery are evil'.  When it comes to the challenge of creating digital educational resources that can be delivered on-line, developers can be quickly faced with similar challenges time and time again.  The interesting and difficult problems lie with how best to overcome the drudgery of familiar problems.

I learnt that the first version of Xerte was released in 2006.  Julian mentioned other tools that can be used to create materials and touched upon the issue of both their cost and their complexity.  Continued development moved from a desktop based application to a set of on-line tools that can be hosted on an institutional web server (as far as I understand things).

An important point from Julian's introductory presentation that I paraphrase is that one of the constants of working with technology is continual change.  During the time between the launch of the original version of Xerte and the date of this blog post, we have seen the emergence of tablet based devices and the increased use of mobile devices, such as smartphones.  The standalone version of Xerte currently delivers content using a technology called Flash (wikipedia), which is a product by Adobe.  According to the Wikipedia article that was just referenced, Adobe has no intention to support Flash for mobile devices.  Instead, Adobe has announced that they wish to develop products for more open standards such as HTML 5. 

This brief excursion into the domain of software technology deftly took us onto the point of the day where the delegates were encouraged to celebrate the release of the new versions of the Xerte software and toolkits.

New Features and Page Types

Ron Mitchell introduced a number of new features and touched upon some topics that were addressed later during the day.  Topics that were mentioned included internationalisation, accessibility and the subject of Flash support.  Other subjects that were less familiar to me included how to support authentication through LDAP (lightweight directory access protocol) when using the Xerte Online Toolkit (as opposed to the standalone version), some hints about how to integrate some aspects of the Xerte software with the Moodle VLE, and how a tool such as Jmol (a Java viewer for molecular structures) could be added to content that is authored through Xerte.

One of the challenges with authoring tools is how to embed either non-standard material or materials that were derived from third party sources.  I seem to remember being told about something called an Embed code which (as far as I understand things) enables HTML code to be embedded directly within content authored through Xerte.  The advantage of this is that you can potentially make use of rich third party websites to create interactive activities.

Internationalisation

I understand the internationalisation as one of those words that is very similar to the term software localisation; it's all about making sure that your software system can be used by people in other countries.  One of the challenges with any software localisation initiative is to create (or harness) a mechanism to replace hardcoded phrases and terms with labels, and have them dynamically changed depending on the locale in which a system is deployed.  Luckily, this is exactly the kind of thing that the developers have been working on: a part of the project called XerteTrans.

Connector Templates

When I found myself working in industry I created a number of e-learning objects that were simply 'page turners'.  What I mean is that you had a learning object that had a pretty boring (but simple) structure - a learning object that was just one page after another.  At the time there wasn't any (easy) way to create a network of pages to take a user through a series of different paths.  It turns out that the new connector templates (which contains something called a connector page), allows you to do just this. 

The way that things work is through a page ID.  Pages can have IDs if you want to add links between them. Apparently there are a couple of different types of connector pages: linear, non-linear and some others (I can't quite make out my handwriting at this point!) The principle of a connector template may well be something that is very useful.  It is a concept that seems significantly easier to understand than other e-learning standards and tools that have tried to offer similar functionality.

A final reflection on this subject is that it is possible to connect sets of pages (or slides) together using PowerPoint, a very different tool that has been designed for a very different audience and purpose.

Xenith and HTML 5

Returning to earlier subjects, Julian Tenney and Fay Cross described a JISC funded project called Xenith. The aim of Xenith is to create a system to allow content that has been authored using Xerte to be presented using HTML 5 (Wikipedia).  The motivation behind this work is to ensure that e-learning materials can be delivered on a wide variety of platforms.  When HTML 5 is used with toolkits such as jQuery, there is less of an argument for making use of Adobe Flash.  There are two problems with continuing to use Flash.  The first is that due to a historic fall out between Apple and Adobe, Flash cannot be used on iOS (iPhone, iPad and iPod) devices.  Secondly, Flash has not been considered to be a technology that has been historically very accessible.

Apparently, a Flash interface will remain in the client version of Xerte for the foreseeable future, but to help uncover accessibility challenges the Xenith developers have been working with JISC TechDis.  It was during this final part of the presentation that the NVDA screen reader was mentioned (which is freely available for download).

Accessibility

Alistair McNaught from TechDis gave a very interesting presentation about some of the general principles of technical and pedagogic accessibility.  Alistair emphasised the point that accessibility isn't just about whether or not something is generally accessible; the term 'accessibility' can be viewed as a label.  I also remember the point that the application of different types of accessibility standards and guidelines don't necessarily guarantee a good or accessible learning experience.

I made a note of the following words.  Accessibility is about: forethought, respect, pragmatism, testing and communication.  Forethought relates to the simple fact that people can become disabled.  There is also the point that higher educational institutions should be anticipatory.  Respect is about admitting that something may be accessible for some people but not for others.  A description of a diagram prepared for a learner who has a visual impairment may not be appropriate if it contains an inordinate amount of description, some of which may be superfluous to an underlying learning objective or pedagogic aim.  Pragmatism relates to making decisions that work for the individual and for the institution.  Testing of both content and services is necessary to understand the challenges that learners face.  Even though educational content may be accessible in a legislative sense, learners may face their own practical challenges.  My understanding is that all these points can be addressed through communication and negotiation.

It was mentioned that Xerte is accessible, but there are some important caveats.  Firstly, it makes use of Flash, secondly the templates offer some restrictions and that access depends on differences between screen readers and browsers.  It is the issue of the browser that reminds us that technical accessibility is a complex issue.  It is also dependent upon the design of the learning materials that we create.

To conclude, Alistair mentioned a couple of links that may be useful.  The first is the TechDis Xerte page.  The second is the Voices page, which relates to a funded project to create an 'English' synthetic voice that can be used with screen reading software.

For those students who are studying H810, I especially recommend Alistair's presentation which can be viewed on-line by visiting the AGM website.  Alistair's presentation starts at about the 88 minute mark.

Closing Discussions and Comments

The final part of the day gave way to discussions, facilitated by Inge Donkervoort, about how to develop the Xerte community site. Delegates were then asked whether they would like an opportunity to attend a similar event next year.

Reflections

One of the things I helped to develop when I worked in industry was a standards compliant (I use this term with a degree of hand waving) 'mini-VLE'.  It didn't take off for a whole host of reasons, but I thought it was pretty cool!  It had a simple navigation facility and users could create a repository of learning objects.  During my time on the project (which predated the release of Xerte), I kept a relatively close eye on which tools I could use to author learning materials.  Two tools that I used was a Microsoft Word based add in (originally called CourseGenie) which allowed authors to create series of separate pages which were then all packaged together to create a single zip file, and an old tool called Reload.  I also had a look at some commercial tools too.

One of the challenges that I came across was that, in some cases, it wasn't easy to determine what content should be created and managed by the VLE and what content was created and managed by an authoring tool.  An administrator of a VLE can define titles and make available on-line communication tools such as forums and wikis and then choose to provide learners with sets of pages (which may or may not be interactive) that have been created using tools like Xerte.  Relating back to accessibility, even though content may be notionally accessible it is also important to consider the route in which end users gain access to content.  Accessible content is pointless if the environment which is used to deliver the content is either inaccessible or is too difficult to navigate.

Reflecting on this issue, there is a 'line' that exists between the internal world of the VLE and the external world of a tool that generates material that can be delivered through (or by) a VLE.  In some respect, I feel that this notional line is never going to be pinned down due to differences between the ways in which systems operate and the environments in which they are used.  Standards can play an important role in trying to defining such issues and helping to make things to work together, but different standards will undoubtedly place the line at different points.

During my time as a developer I also thought the obvious question of, 'why don't we make available other digital resources, such as documents and PowerPoint files to learners?'  Or, to take the opposite view of this question, 'why should I have to use authoring tools at all?'  I have no (personal) objections about using authoring tools to create digital materials.  The benefit of tools such as Xerte is that the output can be simple, directly and clear to understand.  The choice of the mechanisms used to create materials for delivery to students should be dictated primarily by the pedagogic objectives of a module or course of study.

And finally...

One thought did plague me towards the end of the day, and it was this: the emphasis on the day was primarily about technology; there was very little (if at all) about learning and pedagogy.  This can be viewed from two sides - understanding more about the situations in which a particular tool (in combination with other tools) can best be used, and secondly how users (educators or learning technologists) can best begin to learn about the tool and how it can be applied.  Some e-learning tools work well in some situations than others.  Also, educators need to know how to help learners work with the tools (and the results that they generate).

All in all, I had an enjoyable day.  I even recognised a fellow Open University tutor!  It was a good opportunity to chat about the challenges of using and working with technology and to become informed about what interesting developments were on the horizon and how the Xerte tool was being used.  It was also great to learn that a community of users was being established. 

Finally, it was great how the developers were directly tacking the challenge of constant changes in technology, such as the emergence of tablet computers and new HTML standards.  Tackling such an issue head on whilst at the same time trying to establish a community of active open source developers can certainly help to establish a sustainable long-term project.

Permalink 1 comment (latest comment by Jonathan Vernon, Saturday, 20 Oct 2012, 16:58)
Share post
Christopher Douce

Journey: Introduction

Visible to anyone in the world
Edited by Christopher Douce, Monday, 28 Oct 2013, 13:41

It was a glorious September day; a day that echoed many of the best summer days that made the London Olympics so special for Londoners.  It was a day that I knew was going to change my life in a small but significant way - it was the day that I finally got around to changing my old fashioned (or 'classic') mobile telephone into one of those new fangled Smartphones.

'Why did it take you so long?  You work in technology?!', I could hear some of my friends and colleagues exclaiming. 'I was expecting you to be one of those who would jump at a chance to play with new stuff...'  The most obvious reason I can give as to why it took me so long is one that is immediately the most cynical: I've been around long enough to appreciate that early stuff doesn't always work as intended.   I decided to 'hang back' to see how the technology environment changes.  Plus, I was perfectly happy to muddle through with my simple yet elegant mobile phone which efficiently supported its primary purpose, which was to make and receive telephone calls.

I jumped on a red London bus and checked my text messages on my classic phone for the last time (there were none), and settled down to enjoy the ride of around four stops to Lewisham town centre, a bustling part of South East London.  I knew exactly where I was going -  to a shop entitled 'The Carphone Warehouse' (which sounds a bit anomalous, since it was neither a warehouse and I don't know anyone who has a dedicated car phone any more).

Stepping off the bus, I immediately found myself amidst a busy crowd.  One of the things that I love about Lewisham is its fabulous market.  I made my way past the fishmongers and hardware stall, and then past the numerous fruit and veg stalls, all of which seemed to be doing a roaring trade.  I then stepped into an air conditioned shopping centre and into the side entrance of the phone shop.  It was like I had entered another world.

After looking at a couple of 'device exhibits', I decided I needed to chat to someone.  It suddenly struck me how busy the shop was.  I joined an orderly queue had formed in front of the cash desk.  I could see that employees were deep in conversation with customers who had expressions that conveyed concentration.  In the background I could hear a woman speaking in what I understood to be a Nigerian accent expressing unhappiness.  'You can ring the shop...', said the shop assistant.  'But I don't have a phone!' came the flabbergasted reply. 'I want to speak to your manager!'

After about ten or fifteen minutes, it was my turn.  I explained to the harassed shop assistant what model of phone I wanted (I had done a bit of research) told her something about my current contract and mobile telecoms provider, and had a couple of questions.  These were about the costs, whether I could keep my telephone number and how long it would take to move from my old phone to the new phone.  I was told that my phone could have a choice of colours, that the sky is (approximately) the limit in terms of how much I wanted to spend on the contract, and that they can't help me today because the 'genius bar' guy who migrates telephone numbers from one phone system to another had fainted and had to go home.

It was at that point that I decided to leave the shop and theoretically return another day when the 'genius man' was around.  When I was about to go, I was given a really useful nugget of information, which was, 'just go around the corner to that other shop - they can change contracts for you, you don't even have to call up, which you would have to do if you came into the shop later'.

The second telephone shop I went into was a lot quieter and less frantic.  I asked my same questions about model, price and time and was given impeccably clear answers.  Everything was straight forward (if not slightly more expensive).  The helpful assistant cancelled my existing phone by pressing a few buttons, seemed unperturbed that my contract address was about two years out of date, and gave me a new contract to sign.  Plus, there were no (visibly) angry customers.

Within twenty minutes, I was in possession of one of the most powerful computing devices I have ever possessed.  I was sent on my merry way whilst carrying my new mobile friend in a branded bag.  It was as if I had just bought a very expensive shirt from an upmarket fashion boutique - this was a world away from the time when I bought my first ever mobile phone in the mid 1990s.

Heading home, I passed three different mobile telephone shops.  Each shop represented a different mobile phone provider.  I always knew that competition between mobile providers was fierce, but the act of walking past so many very similar shops (which can be found pretty much in every big high street) emphasised the vibrancy and visibility of the mobile telecommunications industry.

As I caught the bus back home, I started to think about the device I had just bought.  The short journey to and from Lewisham made me consider the different forces that all contributed towards making a tiny computing device through which you can almost live your entire life.  Through your phone, you can discover your current location and learn about your onward journey, search for businesses that are close by and explore the depths of human knowledge whilst you stand in the street.  You can even hold up your smartphone and the sights that you see annotated with information.  Your smartphone can become (or, so I've heard!) an extension of yourself; like an additional limb or a sense.  The smartphone is, fundamentally, a technological miracle.  These devices make the internet pervasive and information phenomenally accessible.

Whilst considering magic that has emerged from decades of development and continual technological creativity, I asked myself a fundamental question.  This was, 'where has all this come from?'  We can consider a smartphone to be an emergent application of physics, chemistry, electronics, industrial design, engineering and computing and a whole host of other disciplines and subjects too!  My question, however, was a bit more specific.  Since a smartphone is ultimately a very portable and powerful computer. My question is, 'where does the computer come from?'

Such a question doesn't have an easy answer.  In fact, there are many stories which are closely intertwined and interconnected.  The story of the networking is intrinsically connected with the history of computing and computer science.  Just as today's modern smartphones will be carrying out many different tasks (or threads of operation) running at the same time, there are many different threads of innovation that have happened at different times and at different places throughout the world. 

The development of a technology and its application is situated.  By this, I mean, physically situated within a particular place, but also within a particular societal context or environment.  Devices and technologies don't just magically spring into existence.  There is always a rich and complex back story, and this is often one that is fascinating.

Like so many Londoners, I consider myself to be an immigrant to the city.  Whilst wandering its streets I can easily become aware of a richness and a depth of history that can be connected to the simplest and smallest of streets and intersections.  Just scratching the surface of a geographical location can reveal a rich tapestry of stories and characters.  Some of those stories can be connected to the seemingly simple question of, 'where does the computer come from?'

If I consider my new fangled smartphone, I can immediately ask myself a number of corollary questions.  These are: where do the chips that power it come from?  Where are they designed?  Where do they get manufactured?  Where does the software come from?   But before we begin to answer these questions there is a higher level, almost philosophical question which needs to be answered.  This is: 'where does the idea for the modern computer come from?'

This blog post is hopefully one of many which hope to unpick this precise question.  I hope to (gradually) take a series of journeys in space and time, asking seemingly obvious questions which may not have obvious answers.  This may well take me to different parts of the United Kingdom, but there is also an adventurous part of me that wishes to make a number of journeys to different parts of the world.

But before I even consider travelling anywhere outside of London, there are places in London that are really important in the history of the development of the computer, and a good number of them are only a few miles from my house.  Although the next journey will only be a short distance geographically, we will also go back in time to the nineteenth century.  This is a time when computers were people and machines were powered by steam.

My first journey (whilst carrying my smartphone) will be to an ancient part of London called Elephant and Castle.  It's a part of London that is not known for its glamour and culture of innovation and seems a long way from the conception of a modern computer.  Instead, it is a part of the city that is known for its large concrete tower blocks that were considered to be a symbol for modern urban decay.  In fact, the only times I've spent there was riding through the district on my motorbike on the way to somewhere else.

'What has this area got to do with the development of the computer?', I hear you ask.  I'm going to explain all in my next blog post.  And when I've been to Elephant and Castle, we're going to begin to travel further afield.

Permalink Add your comment
Share post
Christopher Douce

Raspberry Pi : suited and booted

Visible to anyone in the world
Edited by Christopher Douce, Tuesday, 5 Jun 2018, 09:34

I received delivery of my Raspberry Pi computer from RS components about two and a half months ago.  It's taken a bit of time to finally 'get it together' to create a setup that enables me to learn more about what it can do and what I could potentially use it for.  This blog is all about the steps that I took to arrive at a working setup.

When I made my original order I decided on the lazy option - I chose to buy a number of key components at the same time.  Along with my Raspberry Pi board I bought a power supply (which connects to the micro USB port of the device), a HDMI cable and a memory card which contains an operating system.  When you're starting with something new, there's something to be said for going with a standard distribution or setup.  There's the fundamental question of 'will it do stuff when I turn the power on?'  Going with a default or standard setup is a way to get going quickly.

There were, of course, three other things I needed: a mouse, a keyboard and a screen.  For the screen I figured out that I might be able to test my Pi out using my TV (since it had a HDMI port). For a keyboard and mouse, I visited a popular on-line hardware retailer and bought a cheap mouse and a keyboard.  (To get an idea of how cheap they were, both items together cheaper than the price of a single pint of beer; it's astonishing how the price of hardware continues to drop).

I wanted something else, though.  A quick search on eBay using the term 'Raspberry Pi' revealed a number of small companies that had started to make cases for the Pi.  After about ten minutes of searching I found a company called ModMyPi.  Although I didn't strictly need a case, I thought it would be a sensible thing to do.  I could easily imagine myself putting my Pi on the floor and haplessly treading on it whilst carrying a hot cup of tea. 

After ten minutes of agonising decision making I had finally decided that my Pi needed a red case.  Why red?  Well, for two reasons: firstly, to signify that this little box is important (i.e. the red box is where number crunching takes place), and secondly, to make it pretty visible when it's sitting on my beige carpet (so I don't tread on it).

The trouble with buying something new is that things don't always arrive on time, and this was the situation with my tiny Pi case.   Although I soon had my keyboard and mouse, the case took quite a few weeks to arrive due (apparently because I didn't read the small print which said that I was making a pre-order - note to self: read the small print!)

Boot day 1 : Trouble

I had everything: my newly suited (or encased) Raspberry Pi, a power supply, a USB keyboard, a USB  mouse, a HDMI cable and an operating system (a version of Linux) on a memory card.  I attached the USB devices, connected the Pi to my temporary display (my living room telly) and powered everything up.  Through the case I could see that a LED came on and my TV changed display mode - things were happening!  The screen started to fill with boot messages and then suddenly... everything stopped.  I squinted, looked at the screen and I could see that there had been something called a Kernal Panic.

When faced with weird technical stuff going wrong what I tend to do is check all the connections and try again.  Exactly the same thing happened, so I powered down, and scratched my head.  Then, I unplugged the USB device and the USB keyboard and powered up; this time I got a lot further.  I was eventually presented with a Linux login prompt but did not have any way of entering a user id.  This told me that (perhaps) there might have been something wrong with either the mouse of the keyboard.  I plugged both devices, one at a time, into my Windows laptop to see if they were recognised.  The mouse was recognised straight away but Windows had to search for an eternity to find a device driver before the device was recognised, suggesting that there was something special about its design.

Every techie knows that Google is their friend, especially when it comes to weird error messages. I searched for the terms, 'raspberry pi', 'panic' (or dump) and 'keyboard' and quickly found a site called elinux.org that contained a Wiki page which listed keyboards that were known to cause mischief.  I soon figured out that I had ordered the Xenta HK-6106 which was known to cause a kernel panic on a Debian distribution (I obviously had either the same one or a distribution very similar to it).  Mystery solved!

Ordering more stuff

I ordered a new keyboard.  This time I bought one (which cost the price of a half  pint of beer) that was on the 'working peripherals' list.

One of my biggest worries (if you could call it that) is that the screens that I use for my desktop PC are both pretty old (I have a dual screen setup).  One of them only has a VGA input, which is useless for the Pi.  The other screen has a DVI input.  A quick search revealed that it was possible to get HDMI to DVI cables.  I didn't know you could do this, and I have to confess that I don't know much about DVI other than my main PC has got one of these as a video output (in addition to a VGA port).  Still, I decided to buy a cable from eBay and hope for the best.

Boot day 2 : Success

After rummaging in a box that contained an indeterminate number of cables (hasn't every geek got one of these boxes?), I found a network cable.  I took every bit of my Pi setup upstairs to my study area and connected everything together; keyboard, mouse, power supply, screen and network cable (which I physically connected to the back of my router, after dragging it half way across the room since my network cable wasn't quite long enough, and still isn't quite long enough).

I powered up.  A kernel panic didn't occur.  I was presented with a login prompt.   I typed the user id: pi, followed by the password: raspberry.  I then entered 'startx' at the shell prompt.  The screen changed and I was presented with a gui.  My aged screen was working!  I soon discovered an internet browser (accessed through the menu located at the bottom left of the screen).  Within a minute or so I was able to navigate to my favourite news site and open Wikipedia.  Success!

Now that I've got everything working, I asked the question, 'what can I do with it?'  I guess this question has two key answers: you can use it to learn about computing, or you could use it to do stuff.  If I find the time I hope to do both!

Learning with the Pi

Considering the learning aspect, it's obvious that there are loads of things going on from the moment that you turn on the Pi.  There are a couple of pages of screens of mysterious messages which currently don't make much sense to me (it's been a while since I've had a Linux distribution on one of my computers).  When you login to the Pi environment there are loads of menu items, applications and tools that I've never heard of before.  There's also a version of a windowing system that I've never heard of before.  There's also a weird sounding browser which seems to render things pretty well, judging from a brief ten minute play. 

There are also a set of programming tools and utilities.  The learning can go from the low levels of computing (from the level of the operating system) through to higher level applications (that can help to teach fundamentals of programming).  Being a bit of a geek, the most interesting question for me is 'what exactly does the Pi Linux distribution contain?'  This, I think, is going to be my first learning task.

Another geeky question is: how do you build software for the Pi?  My main computers are Intel based desktops or laptops.  The Pi is based around an ARM processor.  How do I take existing Open Source software and compile them up so they work on that ARM chip?  Going down a level even further, how do you get USB peripherals to work with the Pi?  Do I have to write a device driver?  Is the world of ARM device drivers different to Intel device drivers?  I have so many questions!

One thing that I have heard of (in passing, through a quick Google search) is that you can use what is known as a cross compiler.  This means that you can compile software using one processor architecture for another.   Of course, this is getting impossibly deeply technical for a first blog about the Pi so I'm going to stop asking myself difficult questions and wondering (for now) what is and what is not possible!

On another note there are a couple of Open University modules that are tangentially connected to (or might be useful with regards to) the Pi.  The Pi Linux distribution contains an environment called Scratch.  This is a graphical programming language developed by MIT that introduces the fundamentals of computer programming.  The Open University makes use of a derivative of Scratch called Sense, which is used with the TU100 My Digital Life module.  The other module that could be useful is T155 Linux: an introduction.   

Doing stuff with the Pi

So, it boots up.  That's pretty cool.  But what might I practically be able to do with it?  I've heard one of my colleagues talking about potentially using a Pi to create a digital video recorder, which sounds like a fun project.  You can also use it as an embedded system to control other hardware. In fact, looking at the Raspberry Pi blog presents a veritable array of different projects and ideas.

About six or so years ago, perhaps even longer, when I worked in industry, in a company that made educational products that could be used to help teach engineering subjects, I suggested creating a device that could (potentially) be used to help teach the fundamentals of computer networking.  The idea was to make use of an inexpensive embedded microcontroller to create something called a 'computer cube'.  Each cube would have simple input and output (perhaps a couple of switches and a LCD display), as well as a network connection (either a standard network connection, or a proprietary interface that can be easily accessed through software).   The idea was that you could connect a set of computer cubes them together on a desk; you could create your own mini internet and also have the ability to look at the signals transmitted between devices and begin to understand the principles of protocols.

Of course, such an idea was hopelessly ambitious, plus there were increasing numbers of network simulators that did a pretty good job of helping learners to explore the principles of networking.  Fundamentally, at the time, it was a bad idea.

But then the Pi arrived.  The Pi is cheap, small, has its own peripherals and is open.  You can run whatever software you want on it.  A Pi is a web client, but there is no reason why it can't also become a web server.  A Pi could also (potentially) become everything in between too.  You could connect them together using relatively cheap switches and hubs, and explore (in a practical sense) computer networking and the software that supports networking works.  You could set one to transmit data, and perhaps use the general purpose IO ports to indicate output of some kind.

Would it be possible to have a network of Pi devices on a desk?  Possibly.  What software would be useful to learn more about the fundamentals of networking?  I'm not sure.  Could we create some useful curriculum or pedagogic materials to go with this?  I've no idea.  All this sounds like a project that is a bit too big for just one person.  If you accidentally discover this blog post and you think this may be a useful idea (or hold the view that it remains a bad idea), then please do get in touch!

Final notes

There is one clear certainty in computing.  It isn't Moore's Law.  It's that there is always an opportunity to learn new stuff.  As well as looking at the Pi operating system and learning about what the various bits are, I've also heard it mentioned that the language of the Pi is Python (Wikipedia).  This isn't a language that I've used before.  It's certainly about time that I knew something about it!

If you scratch the surface of anything technical you find a set of subjects and technologies that are both interesting and challenging.  Not only is the Raspberry Pi device interesting and challenging in its own right, but I'm sure that the situations in which it can be used and applied will be interesting and challenging too.

Permalink 1 comment (latest comment by Alex Little, Tuesday, 21 Aug 2012, 20:35)
Share post

This blog might contain posts that are only visible to logged-in users, or where only logged-in users can comment. If you have an account on the system, please log in for full access.

Total visits to this blog: 2008791